STA3000: Pivotal quantities based on profile log-likelihoods

The asymptotic theory outlined in the nuisance parameter notes leads to the following three pivotal quantities, in the case that $\theta = (\psi, \lambda)$ and $\psi \in \mathbb{R}$:

$$\begin{split} r_{\rm p}(\psi) &= {\rm sign}(\hat{\psi} - \psi) [2\{\ell_{\rm p}(\hat{\psi}) - \ell_{\rm p}(\psi)\}]^{1/2}, \\ r_e(\psi) &= (\hat{\psi} - \psi) j_{\rm p}(\hat{\psi})^{1/2}, \\ r_u(\psi) &= \ell_{\rm p}(\psi) j_{\rm p}(\hat{\psi})^{-1/2}, \end{split}$$

and these are all approximately standard normal pivots, under the model $f(y; \psi, \lambda)$.

[Aside: the score based pivot is not often used, because the normal approximation seems to be poor in many settings. A version of the standardized score statistic that can be useful is the version given in (8) of the nuisance parameter notes:

$$w_u(\psi) = U_{\psi}(\psi, \hat{\lambda}_{\psi})^T \{ i^{\psi\psi}(\psi, \hat{\lambda}_{\psi}) \} U_{\psi}(\psi, \hat{\lambda}_{\psi}),$$

because this requires fitting only the model with ψ fixed. For example, if it were of interest to assess whether or not $\psi = 0$, i.e. whether or not the simpler model (without ψ) was just as good as the more complex model, then the score statistic only involves fitting the simpler model. This can be useful in some applications.]

The pivotal quantities r_p and r_e are illustrated in Figure 4.7 (lower) in SM (p.130), along with the profile log-likelihood function.

Here is some R code that fits a logistic regression to the Challenger shuttle data given in SM as Example 1.3. The model is $y_i \sim Binomial(m_i, p_i)$, where $m_i = 6$, and $logic(p_i) = \beta_0 + \beta_1 pressure_i + \beta_2 temperature_i$, i = 1, ..., 23.

```
> library(SMPracticals)
> data(shuttle)
> head(shuttle)
  stability error sign wind
                               magn vis
                                         use
1
      xstab
               LX
                    pp head Light
                                     no auto
2
      xstab
               LX
                    pp head Medium
                                     no auto
З
      xstab
               LX
                    pp head Strong
                                     no auto
4
               LX
                    pp tail Light
      xstab
                                     no auto
5
                    pp tail Medium
               LX
      xstab
                                     no auto
                    pp tail Strong no auto
6
      xstab
               LX
> ## wrong shuttle data
> data(shuttle, package = "SMPracticals")
> shuttle
   m r temperature pressure
   6 0
                66
                          50
1
   6 1
2
                70
                          50
                          50
3
  60
                69
4
  60
                68
                          50
```

> attach(shuttle) # simplifies use of names for the next step > shuttle.glm <- glm (cbind(r,m) ~ temperature + pressure, family = binomial)</pre> > summary(shuttle.glm) Call: glm(formula = cbind(r, m) ~ temperature + pressure, family = binomial) Deviance Residuals: Min 1Q Median 30 Max -0.9783 -0.6438 -0.5428 -0.1144 2.0898 Coefficients: Estimate Std. Error z value Pr(|z|)(Intercept) 1.696161 3.405617 0.498 0.6185 temperature -0.086153 0.043549 -1.978 0.0479 * 0.007937 0.007664 1.036 0.3004 pressure ___ Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1 (Dispersion parameter for binomial family taken to be 1)0 Null deviance: 21.012 on 22 degrees of freedom Residual deviance: 14.600 on 20 degrees of freedom AIC: 34.515 Number of Fisher Scoring iterations: 5

. . .

A *p*-value for testing that the coefficient of temperature is zero is given (approximately) by referring the Wald statistic $(\hat{\beta}_1 - 0)j_p^{1/2}(\hat{\beta}_1)$ to a standard normal, and here is 0.048. Similarly the *p*-value for testing that $\beta_2 = 0$ is approximately 0.300. The likelihood ratio pivot for assessing $\beta_1 = 0$ is obtained by maximizing the log-likelihood function with, and without, that constraint.

```
> glm(cbind(r,m) ~ pressure, family=binomial)
Call: glm(formula = cbind(r, m) ~ pressure, family = binomial)
Coefficients:
(Intercept) pressure
-4.371295 0.009666 -1.9
Degrees of Freedom: 22 Total (i.e. Null); 21 Residual
Null Deviance: 21.01
Residual Deviance: 18.78 AIC: 36.69
```


[1] 0.0409037

With a bit more work, it is possible to get confidence intervals based on the log-likelihood ratio pivot, and for this case the interval for β_1 is (-0.1787, -0.0035), for the Wald pivot it is (-0.1715, -0.0008).

