
STA3000: Likelihood asymptotics with nuisance parameters

Assume we have a sample Y = (Y1, . . . , Yn), where the Yi are independent, identically
distributed with density f(yi; θ). Refer to an earlier handout for the definitions and
orders of magnitude of the score function, maximum likelihood estimate, observed
and expected Fisher information. Also there we give the first order theory for θ in
the case that θ is a vector of length k, as well as the special case k = 1. The vector
version results are repeated here:

1√
n
{U(θ)} d→ Nk(0, i1(θ)) (1)

√
n(θ̂ − θ) =

1√
n
i−11 (θ)U(θ){1 + op(1)}, (2)

2{`(θ̂)− `(θ)} = (θ̂ − θ)T i(θ)(θ̂ − θ){1 + op(1)} (3)

from which we have the approximations

wu(θ) = U(θ)T{i(θ)}−1U(θ)
.∼ χ2

k, (4)

we(θ) = (θ̂ − θ)T i(θ)(θ̂ − θ) .∼ χ2
k, (5)

w(θ) = 2{`(θ̂)− `(θ)} .∼ χ2
k. (6)

Now assume that θ = (θ1, . . . θk)
T = (ψ1, . . . , ψq, λ1, . . . , λk−q)

T . We partition
the information matrices compatibly and write

U(θ) =

(
Uψ(θ)
Uλ(θ)

)
,

i(θ) =

(
iψψ iψλ
iλψ iλλ

)
j(θ) =

(
jψψ jψλ
jλψ jλλ

)
and

i−1(θ) =

(
iψψ iψλ

iλψ iλλ

)
j−1(θ) =

(
jψψ jψλ

jλψ jλλ

)
.

The constrained maximum likelihood estimator of λ is denoted by λ̂ψ, which in

regular models satisfies Uλ(ψ, λ̂ψ) = 0.
Note that

iψψ(θ) = {iψψ(θ)− iψλ(θ)i−1λλ (θ)iλψ(θ)}−1, (7)

using the formula for the determinant of a partitioned matrix. A similar result holds
for j.

The profile log-likelihood function is `P(ψ) = `(ψ, λ̂ψ), and the (observed) profile
information function is jP(ψ) = −`′′P(ψ), a q × q matrix.
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We will use results (1) – (3) to conclude the following:

wu(ψ) = Uψ(ψ, λ̂ψ)T{iψψ(ψ, λ̂ψ)}Uψ(ψ, λ̂ψ)
.∼ χ2

q (8)

we(ψ) = (ψ̂ − ψ){iψψ(ψ̂, λ̂)}−1(ψ̂ − ψ)
.∼ χ2

q (9)

w(ψ) = 2{`(ψ̂, λ̂)− `(ψ, λ̂ψ)} = 2{`P(ψ̂)− `P(ψ)} .∼ χ2
q; (10)

see (52), (54) and (56) in CH §9.3.
From (2) we have

√
n

(
ψ̂ − ψ
λ̂− λ

)
d→ N

[(
0
0

)
,

(
iψψ1 (θ) iψλ1 (θ)

iλψ1 (θ) iλλ1 (θ)

)]
(11)

from which we have √
n(ψ̂ − ψ)

d→ N(0, iψψ1 (θ)) (12)

and hence
(ψ̂ − ψ)T{iψψ(ψ, λ)}−1(ψ̂ − ψ)

d→ χ2
q. (13)

Result (9) follows on verifying that i(ψ̂, λ̂) = i(ψ, λ){1 + op(1)}. We can also show

the same result for i(ψ, λ̂ψ), and for j(ψ, λ̂ψ), and for j(ψ̂, λ̂).
For result (8), we start from (1) to get

Uψ(ψ, λ)T{iψψ(ψ, λ)}−1Uψ(ψ, λ)
d→ χ2

q. (14)

We now write

Uψ(ψ, λ̂ψ) = Uψ(ψ, λ) + `ψλ(ψ, λ)(λ̂ψ − λ) +Op(1) (15)

= Uψ(ψ, λ)− jψλ(ψ, λ)(λ̂ψ − λ) +Op(1). (16)

It is important to note that both the first two terms are Op(
√
n).

In the model with ψ fixed, we have again from (2) that

(λ̂ψ − λ) = i−1λλ (ψ, λ)Uλ(ψ, λ){1 + op(1)}; (17)

using this in (16), and jψλ(ψ, λ) = iψλ(ψ, λ){1 + op(1)}, as well as iψψ(ψ, λ̂ψ) =
iψψ(ψ, λ){1 + op(1)} gives

wu(ψ) = {Uψ(θ)− iψλ(θ)i−1λλ (θ)Uλ(θ)}T iψψ(θ)

{Uψ(θ)− iψλ(θ)i−1λλ (θ)Uλ(θ)}{1 + op(1)}.

Now we’re nearly done: we need only recall that if(
Y
X

)
∼ N

(
µY
µX

,

(
ΣY Y ΣY X

ΣXY ΣXX

))
(18)
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that Y −ΣY XΣ−1XXX and X are uncorrelated (hence independent), and the first has
covariance matrix ΣY Y − ΣY XΣ−1XXΣXY .

To get (10), we write

w(ψ) = 2{`(ψ̂, λ̂)− `(ψ, λ)} − 2{`(ψ, λ̂ψ)− `(ψ, λ)}
= U(ψ, λ)T i−1(ψ, λ)U(ψ, λ){1 + op(1)} − Uλ(ψ, λ)T i−1λλ (ψ, λ)Uλ(ψ, λ){1 + op(1)}
= {Uψ(θ)− iψλ(θ)i−1λλ (θ)Uλ(θ)}T iψψ(θ){Uψ(θ)− iψλ(θ)i−1λλ (θ)Uλ(θ)}{1 + op(1)}

and using the multivariate normal result above. The second equality follows from
(3) and (2), and the formula for the inverse of a partitioned matrix.

There are several choices for the variance part wu and we, as noted above:
i(θ), i(θ̂), i(θ̂ψ), and the versions based on observed information. I’ve used the ver-

sions defined in CH: i(θ̂) for the maximum likelihood estimator, and i(ψ, λ̂ψ) for
the score function. The score function is usually only used for a single value of ψ,
typically something like 0, and used when the full MLE is too difficult to compute.
Thus it is easier to use the ’null’ version in the variance. Further analysis of the
asymptotic results using higher order terms suggests, as in the scalar parameter
case, that the observed Fisher information at the MLE is preferred. If we make
this change, and in the special case that k = 1, we have 3 analogues to our scalar
parameter pivotal quantities:

rP(ψ) = sign(ψ̂ − ψ)
√

[2{`P(ψ̂)− `P(ψ)}],
re(ψ) = (ψ̂ − ψ)j

1/2
P (ψ̂),

ru(ψ) = `′P(ψ)j
−1/2
P (ψ̂),

all approximately standard normal under the model. These approximations follow
from the above results; note that

jP(ψ) = −`′′P(ψ) = jψψ(ψ, λ̂ψ)− jψλ(ψ, λ̂ψ)j−1λλ (ψ, λ̂ψ)jλψ(ψ, λ̂ψ) = {jψψ(ψ, λ̂ψ)}−1.

References
[BNC] Barndorff-Nielsen & Cox (1994). Inference and Asymptotics. Ch. 3
[SM] Davison (2003). Statistical Models Ch. 4.4-4.6.
[CH] Cox & Hinkley (1974). Theoretical Statistics. Ch. 9.2, 9.3.

3


