Lehmann & Romano, TSH Ch. 3

- ▶ Setup: define a test function $\phi(y)$ from \mathcal{Y} to [0, 1]
- $\phi(Y) = \Pr(Y \in \mathcal{R})$
- ▶ if $\phi(y) = 1$ then $y \in \mathcal{R}$, if 0, $y \notin \mathcal{R}$
- allows for the possibility of randomized tests
- if $Y \sim f(y; \theta)$, then
- \blacktriangleright $\mathsf{E}_{\theta}\phi(Y) = \int \phi(y) f(y;\theta) dy = \mathsf{probability} \ \mathsf{of} \ \mathsf{rejection}$
- ▶ under H_0 : $\theta \in \Theta_0$, this is the size of the test, or type I error
- ▶ under H_1 : $\theta \in \Theta_1$, this is the power of the test
- Goal: maximize

$$\beta_{\phi}(\theta) = \mathsf{E}_{\theta}\phi(Y) \quad \forall \theta \in \Theta_1,$$

subject to

$$\mathsf{E}_{\theta}\phi(\mathsf{Y}) \leq \alpha, \quad \forall \theta \in \Theta_0$$

Neyman-Pearson lemma

- ▶ Suppose Θ_0 is the point θ_0 , and similarly for Θ_1
- ▶ Assume the existence of densities f_0 and f_1 with respect to the same measure μ
- **1.** Given $0 \le \alpha \le 1$, there exists a test function ϕ and a constant k such that

$$\mathsf{E}_0\phi(\mathsf{Y}) = \alpha \tag{1}$$

and

$$\phi(y) = \begin{cases} 1 & \text{when } f_1(y) > kf_0(y), \\ 0 & \text{when } f_1(y) < kf_0(y). \end{cases}$$
 (2)

- 2. If a test satisfies (1) and (2) for some k, then it is most powerful for testing f_0 against f_1 at level α
- **3.** If ϕ is most powerful at level α for testing f_0 against f_1 , then for some k it satisfies (2), a.e. μ , and satisfies (1) unless there exists a test of size $< \alpha$ and with power 1.

Proof 1.

- trivial for $\alpha = 0$ and $\alpha = 1$ allow $k = \infty$
- ▶ 1. define $\alpha(c) = \Pr\{f_1(Y) > cf_0(Y)\} = \Pr\{f_1(Y)/f)0(Y) > c\}.$
- ▶ 1 $-\alpha(c)$ is a cumulative distribution function
- ▶ so $\alpha(c)$ is non-increasing, right-continuous, $\alpha(-\infty) = 1, \alpha(\infty) = 0$
- ▶ Given 0 < α < 1, let c_0 be such that $\alpha(c_0) \le \alpha \le \alpha(c_0^-)$

$$\phi(y) = \left\{ egin{array}{ll} 1 & ext{when} & f_1(y) > c_0 f_0(y) \ rac{lpha - lpha(c_0)}{lpha(c_0^-) - lpha(c_0)} & ext{when} & f_1(y) = c_0 f_0(y) \ 0 & ext{when} & f_1(y) < c_0 f_0(y) \end{array}
ight.$$

$$\mathsf{E}_0\phi(\mathit{Y}) = \mathsf{Pr}_0\left\{\frac{\mathit{f}_1(\mathit{Y})}{\mathit{f}_0(\mathit{Y})}\right\} +$$

STA 3000F: Nov 29, 2013

3/9

... proof 2.

- Suppose φ is a test satisfying (1) and (2), and that φ* is another test with E₀φ*(Y) ≤ α.
- ▶ Denote by S^+ and S^- the sets in \mathcal{Y} where $\phi(y) \phi^*(y) > 0$ and < 0.
- ▶ In S^+ , $\phi(y) > 0$ so $f_1(y) \ge kf_0(y)$, and

▶

$$\int (\phi - \phi^*)(f_1 - kf_0)d\mu = \int_{S^+ \cup S^-} (\phi - \phi^*)(f_1 - kf_0)d\mu \ge 0$$

difference in power:

$$\int (\phi - \phi^*) f_1 d\mu \ge k \int (\phi - \phi^*) f_0 d\mu \ge 0$$

... proof 3.

- ▶ Let ϕ^* be MP level α , and ϕ satisfy (1) and (2)
- ▶ On $S^+ \cup S^-$, ϕ and ϕ^* differ. Let $S = S^+ \cup S^- \cap \{y : f_1(y) \neq kf_0(y)\}$, and assume $\mu(S) > 0$

$$\int_{\mathcal{S}^{+}\cup\mathcal{S}^{-}}(\phi-\phi^{*})(\mathit{f}_{1}-\mathit{kf}_{0})\mathit{d}\mu=\int_{\mathcal{S}}(\phi-\phi^{*})(\mathit{f}_{1}-\mathit{kf}_{0})\mathit{d}\mu>0$$

- implies ϕ is more powerful than ϕ^*
- contradiction, hence $\mu(S) = 0$
- if ϕ^* had size $< \alpha$ and power < 1, could add points to rejection region until either $E_0\phi^*(Y) = \alpha$ or $E_1\phi^*(Y) = 1$
- ▶ test is unique if $\{y : f_1(y) = kf_0(y)\}$ has measure 0

Comments

- ▶ discreteness: e.g. Y ~ Bin(n, p)
- ▶ MP test has rejection region \mathcal{R} determined by $\{y > d_{\alpha}\}$
- not all values of α attainable: e.g. CH Example 4.9
 Y ~ Poisson(μ)
- ▶ $H_0: \mu = 1, \quad H_1: \mu = \mu_1 > 1, \text{ MP test } Y \ge d_{\alpha}$

Table: attained significance levels

У	$\Pr(Y > y; \mu = 1)$	У	$\Pr(Y > y; \mu = 1)$
0	1	4	0.0189
1	0.632	5	0.0037
2	0.264	6	0.0006
3	0.080	:	÷

- if critical regions are *nested*, i.e. $\mathcal{R}_{\alpha_1} \subset \mathcal{R}_{\alpha_2}$, $\alpha_1 < \alpha_2$, then $p_{obs} = \inf(\alpha; y_{obs} \in \mathcal{R}_{\alpha})$
- asymmetry: $Y \sim N(\mu, 1), H_0: \mu = 0, H_1: \mu = 10, \quad y_{obs} = 3$

Bayesian testing

see CH Example 10.12

▶ simple H_0 , simple H_1 :

$$\frac{\Pr(H_0 \mid y)}{\Pr(H_1 \mid y)} = \frac{\Pr(H_0)}{\Pr(H_1)} \frac{f_0(y)}{f_1(y)}$$

ightharpoonup similarly, with $H_1, \ldots H_k$ potential alternatives

$$\frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\Pr(H_0)f_0(y)}{\Sigma_j \Pr(H_j)f_j(y)}$$

▶ sharp null hypothesis: $H_0: \theta = \theta_0, H_1: \theta \neq \theta_0$

$$\frac{\Pr(H_0 \mid y)}{\Pr(H_0^0 \mid y)} = \frac{\pi_0}{(1 - \pi_0)} \frac{f(y; \theta_0)}{\int \pi_1(\theta) f(y; \theta) d\theta}$$

nuisance parameters

$$\frac{\Pr(H_0 \mid y)}{\Pr(H_0^0 \mid y)} = \frac{\pi_0}{(1 - \pi_0)} \frac{\pi(\lambda \mid h_0) f(y \mid \psi_0, \lambda) d\lambda}{\int \int \pi(\psi, \lambda \mid H_1) f(y \mid \psi, \lambda) d\psi d\lambda}$$

STA 3000F: Nov 29, 2013 7/9

... testing

► Bayes factor
$$B_{10} = \frac{\Pr(y \mid H_1)}{\Pr(y \mid H_0)}$$

▶ typically
$$Pr(y \mid h_i) = \int f(y \mid H_i, \theta_i) \pi(\theta_i \mid H_i) d\theta_i, \quad i = 0, 1$$

11.2 · Inference

Table 11.3 Interpretation of Bayes factor B_{10} in favour of H_1 over H_0 . Since $B_{10} = B_{01}^{-1}$, negating the values of 2 log B_{10} gives the evidence against H_1 .

B_{10}	$2\log B_{10}$	Evidence against H_0
1-3	0–2	Hardly worth a mention
3-20	2-6	Positive
20-150	6-10	Strong
> 150	> 10	Very strong

SM Ch. 11.2

cannot be computed with improper priors

Nature, PNAS, AoS articles by Johnson

- developed an 'objective' Bayesian test for comparison to p-values
- "A p-value of 0.05 or less corresponds to Bayes factors of between 3 and 5, which are consider weak evidence to support a finding"
- "He advocates for scientists to use more stringent p-values of 0.005 or less"
- see also CH Example 10.12 and SM Example 11.15
- emphasis on point hypotheses drives most of these anomalous results
- e.g. $Pr(\theta > 0 \mid y)$