- Setup: define a test function φ(y) from Y to [0, 1]
- $\bullet \ \phi(Y) = \Pr(Y \in \mathcal{R})$
- ▶ if $\phi(y) = 1$ then $y \in \mathcal{R}$, if 0, $y \notin \mathcal{R}$
- allows for the possibility of randomized tests
- if $Y \sim f(y; \theta)$, then
- $\mathsf{E}_{\theta}\phi(Y) = \int \phi(y)f(y;\theta)dy$ = probability of rejection
- under $H_0: \theta \in \Theta_0$, this is the size of the test, or type I error
- under $H_1: \theta \in \Theta_1$, this is the power of the test
- Goal: maximize

$$\beta_{\phi}(\theta) = \mathsf{E}_{\theta}\phi(Y) \quad \forall \theta \in \Theta_1,$$

subject to

- Setup: define a test function φ(y) from Y to [0, 1]
- $\bullet \phi(Y) = \Pr(Y \in \mathcal{R})$
- ▶ if $\phi(y) = 1$ then $y \in \mathcal{R}$, if 0, $y \notin \mathcal{R}$
- allows for the possibility of randomized tests
- if $Y \sim f(y; \theta)$, then
- $\mathsf{E}_{\theta}\phi(Y) = \int \phi(y)f(y;\theta)dy = \mathsf{probability} \text{ of rejection}$
- under $H_0: \theta \in \Theta_0$, this is the size of the test, or type I error
- under $H_1: \theta \in \Theta_1$, this is the power of the test
- Goal: maximize

$$eta_{\phi}(heta) = \mathsf{E}_{ heta} \phi(Y) \quad orall heta \in \Theta_1,$$

subject to

- Setup: define a test function φ(y) from Y to [0, 1]
- $\bullet \phi(Y) = \Pr(Y \in \mathcal{R})$
- if $\phi(y) = 1$ then $y \in \mathcal{R}$, if 0, $y \notin \mathcal{R}$
- allows for the possibility of randomized tests
- if $Y \sim f(y; \theta)$, then
- $E_{\theta}\phi(Y) = \int \phi(y)f(y;\theta)dy = \text{probability of rejection}$
- under $H_0: \theta \in \Theta_0$, this is the size of the test, or type I error
- under $H_1: \theta \in \Theta_1$, this is the power of the test
- Goal: maximize

$$\beta_{\phi}(\theta) = \mathsf{E}_{\theta}\phi(Y) \quad \forall \theta \in \Theta_1,$$

subject to

- Setup: define a test function φ(y) from Y to [0, 1]
- $\bullet \phi(Y) = \Pr(Y \in \mathcal{R})$
- if $\phi(y) = 1$ then $y \in \mathcal{R}$, if 0, $y \notin \mathcal{R}$
- allows for the possibility of randomized tests
- if $Y \sim f(y; \theta)$, then
- $\mathsf{E}_{\theta}\phi(Y) = \int \phi(y)f(y;\theta)dy$ = probability of rejection
- under $H_0: \theta \in \Theta_0$, this is the size of the test, or type I error
- under $H_1: \theta \in \Theta_1$, this is the power of the test
- Goal: maximize

$$\beta_{\phi}(\theta) = \mathsf{E}_{\theta}\phi(Y) \quad \forall \theta \in \Theta_1,$$

subject to

- Setup: define a test function φ(y) from Y to [0, 1]
- $\bullet \phi(Y) = \Pr(Y \in \mathcal{R})$
- if $\phi(y) = 1$ then $y \in \mathcal{R}$, if 0, $y \notin \mathcal{R}$
- allows for the possibility of randomized tests

• if $Y \sim f(y; \theta)$, then

- $\mathsf{E}_{\theta}\phi(Y) = \int \phi(y)f(y;\theta)dy$ = probability of rejection
- under $H_0: \theta \in \Theta_0$, this is the size of the test, or type I error
- under $H_1: \theta \in \Theta_1$, this is the power of the test

Goal: maximize

$$\beta_{\phi}(\theta) = \mathsf{E}_{\theta}\phi(Y) \quad \forall \theta \in \Theta_1,$$

subject to

- Setup: define a test function φ(y) from Y to [0, 1]
- $\bullet \phi(Y) = \Pr(Y \in \mathcal{R})$
- if $\phi(y) = 1$ then $y \in \mathcal{R}$, if 0, $y \notin \mathcal{R}$
- allows for the possibility of randomized tests
- if $Y \sim f(y; \theta)$, then
- $\mathsf{E}_{\theta}\phi(Y) = \int \phi(y)f(y;\theta)dy$ = probability of rejection
- under $H_0: \theta \in \Theta_0$, this is the size of the test, or type I error
- under $H_1: \theta \in \Theta_1$, this is the power of the test

Goal: maximize

$$eta_{\phi}(heta) = \mathsf{E}_{ heta}\phi(Y) \quad orall heta \in \Theta_1,$$

subject to

- Setup: define a test function φ(y) from Y to [0, 1]
- $\bullet \phi(Y) = \Pr(Y \in \mathcal{R})$
- if $\phi(y) = 1$ then $y \in \mathcal{R}$, if 0, $y \notin \mathcal{R}$
- allows for the possibility of randomized tests
- if $Y \sim f(y; \theta)$, then
- $\mathsf{E}_{\theta}\phi(Y) = \int \phi(y)f(y;\theta)dy$ = probability of rejection
- under $H_0: \theta \in \Theta_0$, this is the size of the test, or type I error
- under $H_1: \theta \in \Theta_1$, this is the power of the test

Goal: maximize

$$eta_{\phi}(heta) = \mathsf{E}_{ heta}\phi(Y) \quad \forall heta \in \Theta_1,$$

subject to

- Setup: define a test function $\phi(y)$ from \mathcal{Y} to [0, 1]
- $\bullet \phi(Y) = \Pr(Y \in \mathcal{R})$
- if $\phi(y) = 1$ then $y \in \mathcal{R}$, if 0, $y \notin \mathcal{R}$
- allows for the possibility of randomized tests
- if $Y \sim f(y; \theta)$, then • $\mathbb{E}_{\theta}\phi(Y) = \int \phi(y)f(y; \theta)dy$ = probability of rejection $f \cdot p$.
- under $H_0: \theta \in \Theta_0$, this is the size of the test, or type I error
- under $H_1: \theta \in \Theta_1$, this is the power of the test
- Goal: maximize

$$\beta_{\phi}(\theta) = \mathsf{E}_{\theta}\phi(Y) \quad \forall \theta \in \Theta_1,$$

subject to

 $\mathsf{E}_{\theta}\phi(Y) \leq \alpha, \quad \forall \theta \in \Theta_{\mathsf{0}}$

(0) 🚤

- Setup: define a test function φ(y) from Y to [0, 1]
- $\bullet \ \phi(\mathbf{Y}) = \Pr(\mathbf{Y} \in \mathcal{R})$
- if $\phi(y) = 1$ then $y \in \mathcal{R}$, if 0, $y \notin \mathcal{R}$
- allows for the possibility of randomized tests
- if $Y \sim f(y; \theta)$, then
- $\mathsf{E}_{\theta}\phi(Y) = \int \phi(y)f(y;\theta)dy$ = probability of rejection
- under $H_0: \theta \in \Theta_0$, this is the size of the test, or type I error
- under $H_1: \theta \in \Theta_1$, this is the power of the test

Goal: maximize

$$\beta_{\phi}(\theta) = \mathsf{E}_{\theta}\phi(Y) \quad \forall \theta \in \Theta_1,$$

subject to

$$\mathsf{E}_{\theta}\phi(\mathbf{Y}) \leq \alpha, \quad \forall \theta \in \Theta_{\mathsf{O}}$$

- Suppose Θ_0 is the point θ_0 , and similarly for Θ_1
- Assume the existence of densities f₀ and f₁ with respect to the same measure μ
- Given 0 ≤ α ≤ 1, there exists a test function φ and a constant k such that

$$\mathsf{E}_0\phi(Y) = \alpha \tag{1}$$

$$\phi(y) = \begin{cases} 1 & \text{when } f_1(y) > kf_0(y), \\ 0 & \text{when } f_1(y) < kf_0(y). \end{cases}$$
(2)

- If a test satisfies (1) and (2) for some k, then it is most powerful for testing f₀ against f₁ at level α
- If φ is most powerful at level α for testing f₀ against f₁, then for some k it satisfies (2), a.e. μ, and satisfies (1) unless there exists a test of size < α and with power 1.

- Suppose Θ₀ is the point θ₀, and similarly for Θ₁
- Assume the existence of densities f₀ and f₁ with respect to the same measure μ
- Given 0 ≤ α ≤ 1, there exists a test function φ and a constant k such that

$$\mathsf{E}_0\phi(Y) = \alpha \tag{1}$$

$$\phi(y) = \begin{cases} 1 & \text{when } f_1(y) > kf_0(y), \\ 0 & \text{when } f_1(y) < kf_0(y). \end{cases}$$
(2)

- If a test satisfies (1) and (2) for some k, then it is most powerful for testing f₀ against f₁ at level α
- If φ is most powerful at level α for testing f₀ against f₁, then for some k it satisfies (2), a.e. μ, and satisfies (1) unless there exists a test of size < α and with power 1.

- Suppose Θ₀ is the point θ₀, and similarly for Θ₁
- Assume the existence of densities f₀ and f₁ with respect to the same measure μ
- Given 0 ≤ α ≤ 1, there exists a test function φ and a constant k such that

$$\mathsf{E}_0\phi(Y) = \alpha \tag{1}$$

$$\phi(y) = \begin{cases} 1 & \text{when } f_1(y) > kf_0(y), \\ 0 & \text{when } f_1(y) < kf_0(y). \end{cases}$$
(2)

- If a test satisfies (1) and (2) for some k, then it is most powerful for testing f₀ against f₁ at level α
- If φ is most powerful at level α for testing f₀ against f₁, then for some k it satisfies (2), a.e. μ, and satisfies (1) unless there exists a test of size < α and with power 1.

- Suppose Θ₀ is the point θ₀, and similarly for Θ₁
- Assume the existence of densities f₀ and f₁ with respect to the same measure μ
- **1.** Given $0 \le \alpha \le 1$, there exists a test function ϕ and a constant *k* such that

$$\mathsf{E}_0\phi(Y) = \alpha \tag{1}$$

$$\phi(y) = \begin{cases} 1 & \text{when } f_1(y) > kf_0(y), \\ 0 & \text{when } f_1(y) < kf_0(y). \end{cases}$$
(2)

- If a test satisfies (1) and (2) for some k, then it is most powerful for testing f₀ against f₁ at level α
- If φ is most powerful at level α for testing f₀ against f₁, then for some k it satisfies (2), a.e. μ, and satisfies (1) unless there exists a test of size < α and with power 1.

- trivial for $\alpha = 0$ and $\alpha = 1$ allow $k = \infty$
- 1. define
 - $\alpha(c) = \Pr\{f_1(Y) > cf_0(Y)\} = \Pr\{f_1(Y)/f)O(Y) > c\}.$
- $1 \alpha(c)$ is a cumulative distribution function
- so α(c) is non-increasing, right-continuous α(−∞) = 1, α(∞) = 0
- Given $0 < \alpha < 1$, let c_0 be such that $\alpha(c_0) \le \alpha \le \alpha(c_0^-)$

$$\phi(\mathbf{y}) = \begin{cases} 1\\ \frac{\alpha - \alpha(c_0)}{\alpha(c_0^-) - \alpha(c_0)}\\ 0 \end{cases}$$

when $f_1(y) > c_0 f_0(y)$ when $f_1(y) = c_0 f_0(y)$ when $f_1(y) < c_0 f_0(y)$

$$\mathsf{E}_0\phi(Y) = \mathsf{Pr}_0\left\{\frac{f_1(Y)}{f_0(Y)}\right\} +$$

- trivial for $\alpha = 0$ and $\alpha = 1$ allow $k = \infty$
- 1. define

$$\alpha(c) = \Pr_0\{f_1(Y) > cf_0(Y)\} = \Pr_{f_1(Y)/f)0(Y) > c}.$$

- $1 \alpha(c)$ is a cumulative distribution function
- ▶ so $\alpha(c)$ is non-increasing, right-continuous $\alpha(-\infty) = 1, \alpha(\infty) = 0$
- Given 0 < α < 1, let c₀ be such that α(c₀) ≤ α ≤ α(c₀⁻)

$$\phi(y) = \begin{cases} 1\\ \frac{\alpha - \alpha(c_0)}{\alpha(c_0^-) - \alpha(c_0)}\\ 0 \end{cases}$$

when $f_1(y) > c_0 f_0(y)$ when $f_1(y) = c_0 f_0(y)$ when $f_1(y) < c_0 f_0(y)$

$$\mathsf{E}_0\phi(Y) = \mathsf{Pr}_0\left\{\frac{f_1(Y)}{f_0(Y)}\right\} +$$

(Y) > c {

- trivial for $\alpha = 0$ and $\alpha = 1$ allow $k = \infty$
- 1. define

 $\alpha(\boldsymbol{c}) = \Pr\{f_1(\boldsymbol{Y}) > \boldsymbol{c}f_0(\boldsymbol{Y})\} = \Pr\{f_1(\boldsymbol{Y}) / f_0(\boldsymbol{Y}) > \boldsymbol{c}\}.$

• $1 - \alpha(c)$ is a cumulative distribution function

so α(c) is non-increasing, right-continuous,
 α(-∞) = 1, α(∞) = 0

• Given 0 < α < 1, let c_0 be such that $\alpha(c_0) \le \alpha \le \alpha(c_0^-)$

 $\phi(y) = \begin{cases} 1\\ \frac{\alpha - \alpha(c_0)}{\alpha(c_0^-) - \alpha(c_0)}\\ 0 \end{cases}$

when $f_1(y) > c_0 f_0(y)$ when $f_1(y) = c_0 f_0(y)$ when $f_1(y) < c_0 f_0(y)$

- trivial for $\alpha = 0$ and $\alpha = 1$ allow $k = \infty$
- 1. define
 - $\alpha(c) = \Pr\{f_1(Y) > cf_0(Y)\} = \Pr\{f_1(Y)/f)0(Y) > c\}.$
- $1 \alpha(c)$ is a cumulative distribution function
- so α(c) is non-increasing, right-continuous, α(-∞) = 1, α(∞) = 0
- Given $0 < \alpha < 1$, let c_0 be such that $\alpha(c_0) \le \alpha \le \alpha(c_0^-)$ $\phi(y) = \begin{cases} 1 & \text{when } f_1(y) > c_0 f_0(y) \\ \frac{\alpha - \alpha(c_0)}{\alpha(c_0^-) - \alpha(c_0)} & \text{when } f_1(y) = c_0 f_0(y) \\ 0 & \text{when } f_1(y) < c_0 f_0(y) \end{cases}$ $(f_1(Y))$

- ► trivial for $\alpha = 0$ and $\alpha = 1$ allow $k = \infty \prec$
- 1. define

1. define

$$\alpha(c) = \Pr_0\{f_1(Y) > cf_0(Y)\} = \Pr\{f_1(Y)/f)0(Y) > c\}.$$

- > $1 \alpha(c)$ is a cumulative distribution function
- ▶ so $\alpha(c)$ is non-increasing, right-continuous, $\alpha(-\infty) = 1, \alpha(\infty) = 0$
- Given $0 < \alpha < 1$, let c_0 be such that $\alpha(c_0) \le \alpha \le \alpha(c_0^-)$

 $\phi(y) = \begin{cases} 1 & \text{when } f_1(y) > c_0 f_0(y) \\ \frac{\alpha - \alpha(c_0)}{\alpha(c_0^-) - \alpha(c_0)} & \text{when } f_1(y) = c_0 f_0(y) \end{cases}$

- trivial for $\alpha = 0$ and $\alpha = 1$ allow $k = \infty$
- 1. define
 - $\alpha(c) = \Pr_{0}\{f_{1}(Y) > cf_{0}(Y)\} = \Pr\{f_{1}(Y)/f)0(Y) > c\}.$
- $1 \alpha(c)$ is a cumulative distribution function
- ► so $\alpha(c)$ is non-increasing, right-continuous, $\alpha(-\infty) = 1, \alpha(\infty) = 0$
- Given $0 < \alpha < 1$, let c_0 be such that $\alpha(c_0) \le \alpha \le \alpha(c_0^-)$

$$\phi(y) = \begin{cases} 1 & \text{when } f_1(y) > c_0 f_0(y) \\ \frac{\alpha - \alpha(c_0)}{\alpha(c_0^-) - \alpha(c_0)} & \text{when } f_1(y) = c_0 f_0(y) \\ 0 & \text{when } f_1(y) < c_0 f_0(y) \end{cases}$$

- trivial for $\alpha = 0$ and $\alpha = 1$ allow $k = \infty$
- 1. define
 - $\alpha(c) = \Pr_{0}\{f_{1}(Y) > cf_{0}(Y)\} = \Pr\{f_{1}(Y)/f)0(Y) > c\}.$
- $1 \alpha(c)$ is a cumulative distribution function
- ► so $\alpha(c)$ is non-increasing, right-continuous, $\alpha(-\infty) = 1, \alpha(\infty) = 0$
- Given $0 < \alpha < 1$, let c_0 be such that $\alpha(c_0) \le \alpha \le \alpha(c_0^-)$

$$\phi(y) = \begin{cases} 1 & \text{when } f_1(y) > c_0 f_0(y) \\ \frac{\alpha - \alpha(c_0)}{\alpha(c_0^-) - \alpha(c_0)} & \text{when } f_1(y) = c_0 f_0(y) \\ 0 & \text{when } f_1(y) < c_0 f_0(y) \end{cases}$$

$$E_{0}\phi(Y) = \Pr_{0}\left\{\frac{f_{1}(Y)}{f_{0}(Y)}\right\} + \frac{\alpha - \alpha(C_{\bullet})}{\alpha(c_{\bullet}) - \alpha(c_{\bullet})} \cdot \Pr\left(\frac{f_{1}}{f_{\bullet}} - c_{\bullet}\right)$$

- Suppose φ is a test satisfying (1) and (2), and that φ^{*} is another test with E₀φ^{*}(Y) ≤ α.
- ▶ Denote by S^+ and S^- the sets in \mathcal{Y} where $\phi(y) \phi^*(y) > 0$ and < 0.
- ▶ In S^+ , $\phi(y) > 0$ so $f_1(y) \ge kf_0(y)$, and

$$\int (\phi - \phi^*) (f_1 - kf_0) d\mu = \int_{S^+ \cup S^-} (\phi - \phi^*) (f_1 - kf_0) d\mu \ge 0$$

difference in power:

$$\int (\phi - \phi^*) f_1 d\mu \ge k \int (\phi - \phi^*) f_0 d\mu \ge 0$$

- Suppose φ is a test satisfying (1) and (2), and that φ* is another test with E₀φ*(Y) ≤ α.
- ▶ Denote by S^+ and S^- the sets in \mathcal{Y} where $\phi(y) \phi^*(y) > 0$ and < 0.
- ▶ In S^+ , $\phi(y) > 0$ so $f_1(y) \ge kf_0(y)$, and

$$\int (\phi - \phi^*) (f_1 - kf_0) d\mu = \int_{S^+ \cup S^-} (\phi - \phi^*) (f_1 - kf_0) d\mu \ge 0$$

difference in power:

$$\int (\phi - \phi^*) f_1 d\mu \ge k \int (\phi - \phi^*) f_0 d\mu \ge 0$$

R Rz Yz Yź

- Suppose φ is a test satisfying (1) and (2), and that φ* is another test with E₀φ*(Y) ≤ α.
- ▶ Denote by S^+ and S^- the sets in \mathcal{Y} where $\phi(y) \phi^*(y) > 0$ and < 0.
- ▶ In S^+ , $\phi(y) > 0$ so $f_1(y) \ge kf_0(y)$, and

$$\int (\phi - \phi^*) (f_1 - kf_0) d\mu = \int_{S^+ \cup S^-} (\phi - \phi^*) (f_1 - kf_0) d\mu \ge 0$$

difference in power:

$$\int (\phi - \phi^*) f_1 d\mu \ge k \int (\phi - \phi^*) f_0 d\mu \ge 0$$

- Suppose φ is a test satisfying (1) and (2), and that φ* is another test with E₀φ*(Y) ≤ α.
- ▶ Denote by S^+ and S^- the sets in \mathcal{Y} where $\phi(y) \phi^*(y) > 0$ and < 0.
- In S^+ , $\phi(y) > 0$ so $f_1(y) \ge kf_0(y)$, and

$$\int (\phi - \phi^*)(f_1 - kf_0)d\mu = \int_{\mathcal{S}^+ \cup \mathcal{S}^-} (\phi - \phi^*)(f_1 - kf_0)d\mu \ge 0$$

difference in power:

$$\int (\phi - \phi^*) f_1 d\mu \ge k \int (\phi - \phi^*) f_0 d\mu \ge 0$$

- Suppose φ is a test satisfying (1) and (2), and that φ* is another test with E₀φ*(Y) ≤ α.
- ▶ Denote by S^+ and S^- the sets in \mathcal{Y} where $\phi(y) \phi^*(y) > 0$ and < 0.
- In S^+ , $\phi(y) > 0$ so $f_1(y) \ge kf_0(y)$, and

$$\int (\phi - \phi^*)(f_1 - kf_0)d\mu = \int_{\mathcal{S}^+ \cup \mathcal{S}^-} (\phi - \phi^*)(f_1 - kf_0)d\mu \ge 0$$

difference in power:

 $\int (\phi - \phi^*) f_1 d\mu \ge k \int (\phi - \phi^*) f_0 d\mu \ge 0$

• Let ϕ^* be MP level α , and ϕ satisfy (1) and (2)

• On $S^+ \cup S^-$, ϕ and ϕ^* differ. Let $S = S^+ \cup S^- \cap \{y : f_1(y) \neq kf_0(y)\}$, and assume $\mu(S) > 0$

$$\int_{S^+\cup S^-} (\phi - \phi^*) (f_1 - kf_0) d\mu = \int_S (\phi - \phi^*) (f_1 - kf_0) d\mu > 0$$

- implies ϕ is more powerful than ϕ^*
- contradiction, hence $\mu(S) = 0$
- If φ* had size < α and power < 1, could add points to rejection region until either E₀φ*(Y) = α or E₁φ*(Y) = 1
- test is unique if $\{y : f_1(y) = kf_0(y)\}$ has measure 0

- Let ϕ^* be MP level α , and ϕ satisfy (1) and (2)
- ▶ On $S^+ \cup S^-$, ϕ and ϕ^* differ. Let $S = S^+ \cup S^- \cap \{y : f_1(y) \neq kf_0(y)\}$, and assume $\mu(S) > 0$

$$\int_{S^+\cup S^-} (\phi - \phi^*) (f_1 - kf_0) d\mu = \int_S (\phi - \phi^*) (f_1 - kf_0) d\mu > 0$$

- implies ϕ is more powerful than ϕ^*
- contradiction, hence $\mu(S) = 0$
- If φ* had size < α and power < 1, could add points to rejection region until either E₀φ*(Y) = α or E₁φ*(Y) = 1
- test is unique if $\{y : f_1(y) = kf_0(y)\}$ has measure 0

- Let ϕ^* be MP level α , and ϕ satisfy (1) and (2)
- • On $S^+ \cup S^-$, ϕ and ϕ^* differ. Let $S = S^+ \cup S^- \cap \{y : f_1(y) \neq kf_0(y)\}$, and assume $\mu(S) > 0$ $(^{+}US^{-}(2.))$

$$\int_{S^+\cup S^-} (\phi - \phi^*)(f_1 - kf_0)d\mu = \int_{S} (\phi - \phi^*)(f_1 - kf_0)d\mu > 0$$

mplies ϕ is more powerful than ϕ^*
contradiction, hence $\mu(S) = 0$
$$\phi = \phi^+ \sigma_{S}$$

$$\phi = \phi_{S} + \sigma_{S}$$

- Let ϕ^* be MP level α , and ϕ satisfy (1) and (2)
- On $S^+ \cup S^-$, ϕ and ϕ^* differ. Let $S = S^+ \cup S^- \cap \{y : f_1(y) \neq kf_0(y)\}$, and assume $\mu(S) > 0$

$$\int_{\mathcal{S}^+\cup\mathcal{S}^-} (\phi-\phi^*)(f_1-kf_0)d\mu = \int_{\mathcal{S}} (\phi-\phi^*)(f_1-kf_0)d\mu > 0$$

• implies ϕ is more powerful than ϕ^*

 $\mathcal{I}^{\uparrow} = \forall > \forall *$

5

- if φ* had size < α and power < 1, could add points to rejection region until either E₀φ*(Y) = α or E₁φ*(Y) = 1
- ► test is unique if $\{y : f_1(y) = kf_0(y)\}$ has measure 0

- Let ϕ^* be MP level α , and ϕ satisfy (1) and (2)
- ▶ On $S^+ \cup S^-$, ϕ and ϕ^* differ. Let $S = S^+ \cup S^- \cap \{y : f_1(y) \neq kf_0(y)\}$, and assume $\mu(S) > 0$

$$\int_{S^+\cup S^-} (\phi - \phi^*) (f_1 - kf_0) d\mu = \int_{S} (\phi - \phi^*) (f_1 - kf_0) d\mu > 0$$

- implies ϕ is more powerful than ϕ^*
- contradiction, hence $\mu(S) = 0$
- if φ* had size < α and power < 1, could add points to rejection region until either E₀φ*(Y) = α or E₁φ*(Y) = 1
- ► test is unique if $\{y : f_1(y) = kf_0(y)\}$ has measure 0

- Let ϕ^* be MP level α , and ϕ satisfy (1) and (2)
- On $S^+ \cup S^-$, ϕ and ϕ^* differ. Let $S = S^+ \cup S^- \cap \{y : f_1(y) \neq kf_0(y)\}$, and assume $\mu(S) > 0$

$$\int_{\mathcal{S}^+\cup\mathcal{S}^-} (\phi-\phi^*)(f_1-kf_0)d\mu = \int_{\mathcal{S}} (\phi-\phi^*)(f_1-kf_0)d\mu > 0$$

- implies ϕ is more powerful than ϕ^*
- contradiction, hence $\mu(S) = 0$
- if φ* had size < α and power < 1, could add points to rejection region until either E₀φ*(Y) = α or E₁φ*(Y) = 1

▶ test is unique if $\{y : f_1(y) = kf_0(y)\}$ has measure 0

- Let ϕ^* be MP level α , and ϕ satisfy (1) and (2)
- On $S^+ \cup S^-$, ϕ and ϕ^* differ. Let $S = S^+ \cup S^- \cap \{y : f_1(y) \neq kf_0(y)\}$, and assume $\mu(S) > 0$

$$\int_{\mathcal{S}^+\cup\mathcal{S}^-} (\phi-\phi^*)(f_1-kf_0)d\mu = \int_{\mathcal{S}} (\phi-\phi^*)(f_1-kf_0)d\mu > 0$$

- implies ϕ is more powerful than ϕ^*
- contradiction, hence $\mu(S) = 0$
- if φ* had size < α and power < 1, could add points to rejection region until either E₀φ*(Y) = α or E₁φ*(Y) = 1
- ► test is unique if $\{y : f_1(y) = kf_0(y)\}$ has measure 0

• discreteness: e.g. $Y \sim Bin(n, p)$

• MP test has rejection region \mathcal{R} determined by $\{y > d_{\alpha}\}$

- not all values of α attainable: e.g. CH Example 4.9
 Y ~ Poisson(μ)
- $H_0: \mu = 1$, $H_1: \mu = \mu_1 > 1$, MP test $Y \ge d_{\alpha}$

Table : attained significance levels

If critical regions are nested, i.e. $\mathcal{R}_{a_1} \subset \mathcal{R}_{a_2}$ or $\leq a_2$, then $P_{a_2} = Int(\alpha_1, \beta_{a_2} \in \mathcal{R}_{a_3})$

 $M_{\rm res} = 0, H_{\rm c}$, $\mu = 0, H_{\rm c}$, $\mu = 10, -y_{\rm obs} = 30$

- discreteness: e.g. Y ~ Bin(n, p)
- ► MP test has rejection region *R* determined by {*y* > *d*_α}
- not all values of α attainable: e.g. CH Example 4.9
 Y ~ Poisson(μ)
- $H_0: \mu = 1, \quad H_1: \mu = \mu_1 > 1, \text{ MP test } Y \ge d_{\alpha}$

Table : attained significance levels

If critical regions are nested, i.e. $\mathcal{R}_{\alpha_1} \subset \mathcal{R}_{\alpha_2}$, $\alpha_1 < \alpha_2$, then $\rho_{\alpha_2} = \log(\alpha_1 \gamma_{\alpha_2})$

 $V \sim N(\mu, 1), H_0$, $\mu = 0, H_1$, $\mu = 10, \dots, Y_{obs} = 3.0$

- discreteness: e.g. Y ~ Bin(n, p)
- ► MP test has rejection region *R* determined by {*y* > *d*_α}
- not all values of α attainable: e.g. CH Example 4.9
 Y ~ Poisson(μ)

• $H_0: \mu = 1, \quad H_1: \mu = \mu_1 > 1, \text{ MP test } Y \ge d_{\alpha}$

able : attained significance levels

 if critical regions are *nested*, i.e. R_{α1} ⊂ R_{α2}, α1 < α2, then _{Pobs} = inf(α; y_{obs} ∈ R_α)

 $\sum_{\mu=0}^{n} \frac{1}{2} (\mu_{1}^{-1})_{\mu} P_{0} = \mu = 0, P_{1} = \mu = 10, \quad y_{abs} = 3$

- discreteness: e.g. $Y \sim Bin(n, p)$
- ► MP test has rejection region *R* determined by {*y* > *d*_α}
- not all values of α attainable: e.g. CH Example 4.9
 Y ~ Poisson(μ)
- $H_0: \mu = 1$, $H_1: \mu = \mu_1 > 1$, MP test $Y \ge d_{\alpha}$

Table : attained significance levels

- ▶ if critical regions are *nested*, i.e. $\mathcal{R}_{\alpha_1} \subset \mathcal{R}_{\alpha_2}, \alpha_1 < \alpha_2$, then $\rho_{obs} = \inf(\alpha; \gamma_{obs} \in \mathcal{R}_{\alpha})$
- asymmetry:

 $Y \sim N(\mu, 1), H_0: \mu = 0, H_1: \mu = 10, \quad y_{obs} = 3$

- discreteness: e.g. Y ~ Bin(n, p)
- ► MP test has rejection region *R* determined by {*y* > *d*_α}
- not all values of α attainable: e.g. CH Example 4.9
 Y ~ Poisson(μ)
- $\blacktriangleright H_0: \mu = 1, \quad H_1: \mu = \mu_1 > 1, \text{ MP test } Y \ge d_\alpha$

Table : attained significance levels

У	$\Pr(Y > y; \mu = 1)$	У	$\Pr(Y > y; \mu = 1)$
0	1	4	0.0189
1	0.632	5	0.0037
2	0.264	6	0.0006
3	0.080	÷	:

- if critical regions are *nested*, i.e. R_{α1} ⊂ R_{α2}, α1 < α2, then p_{obs} = inf(α; y_{obs} ∈ R_α)
- asymmetry:

 $Y \sim N(\mu, 1), H_0: \mu = 0, H_1: \mu = 10, \quad y_{obs} = 3$

- discreteness: e.g. $Y \sim Bin(n, p)$
- MP test has rejection region \mathcal{R} determined by $\{y > d_{\alpha}\}$
- not all values of α attainable: e.g. CH Example 4.9 $Y \sim \text{Poisson}(\mu)$ (f = Y = 3)

•
$$H_0: \mu = 1$$
, $H_1: \mu = \mu_1 > 1$, MP test $Y \ge d_0$

reject Ho w. tr ' {Y>3} = R La Me Table : attained significance levels $\frac{y \quad \Pr(Y \ge y; \mu = 1) \quad y \quad \Pr(Y \ge y; \mu = 1)}{0 \quad 1}$ 1f 724 0.632 5 0.0037 ryset the If Y<3 acc. H 2 0.264 6 0.0006 : : 0.080

- if critical regions are *nested*, i.e. $\mathcal{R}_{\alpha_1} \subset \mathcal{R}_{\alpha_2}, \alpha_1 < \alpha_2$, then $p_{obs} = \inf(\alpha; y_{obs} \in \mathcal{R}_{\alpha})$
- asymmetry:

$$Y \sim N(\mu, 1), H_0: \mu = 0, H_1: \mu = 10, \quad y_{obs} = 3$$

see CH Example 10.12

= priveddy x LR

• simple H_0 , simple H_1 :

$$\frac{\Pr(H_0 \mid y)}{\Pr(H_1 \mid y)} = \frac{\Pr(H_0)}{\Pr(H_1)} \frac{f_0(y)}{f_1(y)} \quad \operatorname{Posterison}_{\delta \notin A}$$

► similarly, with $H_1, ..., H_k$ potential alternatives $\frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\Pr(H_0)f_0(y)}{\sum_j \Pr(H_j)f_j(y)}$

sharp null hypothesis: $H_0: \theta = \theta_0, \quad H_1: \theta \neq \theta_0$ $\frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\pi_0}{(1 - \pi_0)} \frac{f(y; \theta_0)}{\int \pi_1(\theta) f(y; \theta) d\theta}$

nuisance parameters

 $\frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\pi_0}{(1 - \pi_0)} \frac{\pi(\lambda \mid h_0)f(y \mid \psi_0, \lambda)d\lambda}{\int \int \pi(\psi, \lambda \mid H_1)f(y \mid \psi, \lambda)d\psi d\lambda}$

see CH Example 10.12

• simple H_0 , simple H_1 :

 $\frac{\Pr(H_0 \mid y)}{\Pr(H_1 \mid y)} = \frac{\Pr(H_0)}{\Pr(H_1)} \frac{f_0(y)}{f_1(y)}$ • similarly, with H_1, \dots, H_k potential alternatives $\frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\Pr(H_0)f_0(y)}{\sum_j \Pr(H_j)f_j(y)}$

► sharp null hypothesis: $H_0 : \theta = \theta_0$, $H_1 : \theta \neq \theta_0$ $\frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\pi_0}{(1 - \pi_0)} \frac{f(y; \theta_0)}{\int \pi_1(\theta) f(y; \theta) d\theta}$

nuisance parameters

 $\frac{\Pr(H_0 \mid y)}{\Pr(H_0 \mid y)} = \frac{\pi_0}{(1 - \pi_0)} \frac{\pi(\lambda \mid h_0) f(y \mid \psi_0, \lambda) d\lambda}{\int \int \pi(\psi, \lambda \mid H_1) f(y \mid \psi, \lambda) d\psi d\lambda}$

see CH Example 10.12 \blacktriangleright simple H_0 , simple H_1 : $\frac{\Pr(H_0 \mid y)}{\Pr(H_1 \mid y)} = \frac{\Pr(H_0)}{\Pr(H_1)} \frac{f_0(y)}{f_1(y)}$ N(0,1) OFO, • similarly, with H_1, \ldots, H_k potential alternatives $\Theta \sim \mathcal{N}(\mu^{\mathbb{B}}, \mathbf{I})$ $\frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\Pr(H_0)f_0(y)}{\sum_i \Pr(H_i)f_i(y)}$ ▶ sharp null hypothesis: $H_0: \theta = \theta_0, \quad H_1: \theta \neq \theta_0$ $\frac{\Pr(H_{0} \mid y)}{\Pr(H_{0}^{c} \mid y)} = \frac{\pi_{0}}{(1 - \pi_{0})} \frac{f(y; \theta_{0})}{\int \pi_{1}(\theta)f(y; \theta)d\theta} - \frac{(y \cdot \theta)^{1/2}}{e^{-(\theta - y^{3})/2}}$ isance parameters $\frac{\Pr(H_{0} \mid y)}{\Pr(H_{0}^{c} \mid y)} \prod_{i=1}^{\infty} \left(\frac{\theta}{\theta} > 0 \mid \frac{y}{\psi}\right) \xrightarrow{B}_{i} \left(\frac{\theta}{\psi} > 0 \mid \frac{y}{\psi}\right) \xrightarrow{B}_{i} \left(\frac{\theta}{\psi} > 0 \mid \frac{y}{\psi}\right)$

see CH Example 10.12

• simple H_0 , simple H_1 :

$$\frac{\Pr(H_0 \mid y)}{\Pr(H_1 \mid y)} = \frac{\Pr(H_0)}{\Pr(H_1)} \frac{f_0(y)}{f_1(y)}$$
similarly, with H_1, \dots, H_k potential alternatives
$$\frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\Pr(H_0)f_0(y)}{\sum_j \Pr(H_j)f_j(y)}$$
sharp null hypothesis: $H_0 : \theta = \theta_0, \quad H_1 : \theta \neq \theta_0$

$$\frac{\Pr(H_0 \mid y)}{\Pr(H_0^c \mid y)} = \frac{\pi_0}{(1 - \pi_0)} \frac{f(y; \theta_0)}{\int \pi_1(\theta)f(y; \theta)d\theta}$$
nuisance parameters
$$\frac{H_0 : \psi = \psi_0}{\Pr(H_0 \mid y)} = \frac{\pi_0}{(1 - \pi_0)} \frac{\pi(\lambda \mid H_0)f(y \mid \psi_0, \lambda)d\lambda}{\int \int \pi(\psi, \lambda \mid H_1)f(y \mid \psi, \lambda)d\psi d\lambda}$$

► Bayes factor $B_{10} = \frac{\Pr(y \mid H_1)}{\Pr(y \mid H_0)}$

► typically $Pr(y \mid h_i) = \int f(y \mid H_i, \theta_i) \pi(\theta_i \mid H_i) d\theta_i, \quad i = 0, 1$

11.2 · Inference

Table 11.3 Interpretation of Bayes	D	2 log P.s	Evidence against U
factor B_{10} in favour of H_1	B 10	2 log <i>B</i> 10	Evidence against 110
over H_0 . Since	17 - 12	84.510	
$B_{10} = B_{01}^{-1}$, negating the	1-3	0-2	Hardly worth a mention
values of $2 \log B_{10}$ gives	3-20	2-6	Positive
the evidence against H_1 .	20-150	6-10	Strong
	> 150	> 10	Very strong

SM Ch. 11.2

testing		r	
► Bayes factor $B_{10} = \frac{\Pr(y \mid H)}{\Pr(y \mid H)}$	$\frac{l_1}{l_0}$	۰+، لو	LR for H vs Ho
• typically $\Pr(y \mid f_i) = \int f(y \mid f_i)$	$H_i, \theta_i)$	$\pi(heta_i \mid I)$	$H_i)d heta_i, i=0,1$
harz pr (y/H) 11.2 · Inference	π <u>ι</u> θ;	17)=	$i\theta_i = P_n($
Table 11.3 Interpretation of Bayes factor B_{10} in favour of H_1	B ₁₀	$2\log B_{10}$	Evidence against H_0
over H_0 . Since $B_{10} = B_{01}^{-1}$, negating the values of 2 log B_{10} gives the wither account H_1	1–3 3–20	0–2 2–6	Hardly worth a mention Positive
CH Sx 11.22? Lindley	20–150 > 150	6–10 > 10	Strong Very strong
SM Ch. 11.2			

► Bayes factor
$$B_{10} = \frac{\Pr(y \mid H_1)}{\Pr(y \mid H_0)}$$

• typically $Pr(y \mid h_i) = \int f(y \mid H_i, \theta_i) \pi(\theta_i \mid H_i) d\theta_i$, i = 0, 1

Table 11.3 Interpretation of Bayes factor B_{10} in favour of H_1	B_{10}	$2\log B_{10}$	Evidence against H_0
over H_0 . Since $B_{10} = B_{01}^{-1}$, negating the	1-3	0–2	Hardly worth a mention
values of $2 \log B_{10}$ gives	3-20	2-6	Positive
the evidence against H_1 .	20-150	6-10	Strong
	> 150	> 10	Very strong

SM Ch. 11.2

► Bayes factor
$$B_{10} = \frac{\Pr(y \mid H_1)}{\Pr(y \mid H_0)}$$

• typically $Pr(y \mid h_i) = \int f(y \mid H_i, \theta_i) \pi(\theta_i \mid H_i) d\theta_i$, i = 0, 1

Table 11.3 Interpretation of Bayes factor B_{10} in favour of H_1	B_{10}	$2\log B_{10}$	Evidence against H_0
over H_0 . Since $B_{10} = B_{01}^{-1}$, negating the	1-3	0–2	Hardly worth a mention
values of $2 \log B_{10}$ gives	3-20	2-6	Positive
the evidence against H_1 .	20-150	6-10	Strong
	> 150	> 10	Very strong

SM Ch. 11.2

► Bayes factor
$$B_{10} = \frac{\Pr(y \mid H_1)}{\Pr(y \mid H_0)}$$

Table 11.3 Interpretation of Bayes factor B_{10} in favour of H_1	B_{10}	$2\log B_{10}$	Evidence against H_0	
over H_0 . Since $B_{10} = B_{01}^{-1}$, negating the	1–3	0–2	Hardly worth a mention	
values of $2 \log B_{10}$ gives	3-20	2-6	Positive	
the evidence against H_1 .	20-150	6-10	Strong	
	> 150	> 10	Very strong	

SM Ch. 11.2

- developed an 'objective' Bayesian test for comparison to p-values
- "A p-value of 0.05 or less corresponds to Bayes factors of between 3 and 5, which are consider weak evidence to support a finding"
- "He advocates for scientists to use more stringent p-values of 0.005 or less"
- ▶ see also CH Example 10.12 and SM Example 11.15
- emphasis on point hypotheses drives most of these anomalous results
- e.g. $Pr(\theta > 0 \mid y)$

- developed an 'objective' Bayesian test for comparison to p-values
- "A p-value of 0.05 or less corresponds to Bayes factors of between 3 and 5, which are consider weak evidence to support a finding"
- "He advocates for scientists to use more stringent p-values of 0.005 or less"
- see also CH Example 10.12 and SM Example 11.15
- emphasis on point hypotheses drives most of these anomalous results
- e.g. $Pr(\theta > 0 \mid y)$

- developed an 'objective' Bayesian test for comparison to p-values
- "A p-value of 0.05 or less corresponds to Bayes factors of between 3 and 5, which are consider weak evidence to support a finding"
- "He advocates for scientists to use more stringent p-values of 0.005 or less"
- see also CH Example 10.12 and SM Example 11.15
- emphasis on point hypotheses drives most of these anomalous results
- e.g. $Pr(\theta > 0 \mid y)$

- developed an 'objective' Bayesian test for comparison to p-values
- "A p-value of 0.05 or less corresponds to Bayes factors of between 3 and 5, which are consider weak evidence to support a finding"
- "He advocates for scientists to use more stringent p-values of 0.005 or less"
- see also CH Example 10.12 and SM Example 11.15
- emphasis on point hypotheses drives most of these anomalous results
- e.g. $Pr(\theta > 0 \mid y)$

- developed an 'objective' Bayesian test for comparison to p-values
- "A p-value of 0.05 or less corresponds to Bayes factors of between 3 and 5, which are consider weak evidence to support a finding"
- "He advocates for scientists to use more stringent p-values of 0.005 or less"
- see also CH Example 10.12 and SM Example 11.15
- emphasis on point hypotheses drives most of these anomalous results
- e.g. $Pr(\theta > 0 \mid y)$

- developed an 'objective' Bayesian test for comparison to p-values
- "A p-value of 0.05 or less corresponds to Bayes factors of between 3 and 5, which are consider weak evidence to support a finding"
- "He advocates for scientists to use more stringent p-values of 0.005 or less"
- see also CH Example 10.12 and SM Example 11.15
- emphasis on point hypotheses drives most of these anomalous results
- e.g. $Pr(\theta > 0 \mid y)$