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Lehmann & Romano, TSH Ch. 3

» Setup: define a test function ¢(y) from ) to [0, 1]
» o(Y)=Pr(Y eR)
» ifp(y)=1theny e R,if0,y ¢ R

» allows for the possibility of randomlzed tests
rirfoid— (8)

» if Y ~f(y;0

»(Ego [ o(y)f(y;0)dy = probablllty of rejection /_'[‘ y.

» under Hp : 6 € Og, this is the size of the test, or type | error

» under H; : 6 € ©4, this is the power of the test W 7

v"n.
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Lehmann & Romano, TSH Ch. 3

vV vy VvYyy

vV vyVvVYyy

Setup: define a test function ¢(y) from ) to [0, 1]
o(Y)=Pr(Y eR)

ifo(y)=1theny e R,if0,y ¢ R

allows for the possibility of randomized tests

if Y ~ f(y;0), then

Eod(Y) = [ ¢(y)f(y;0)dy = probability of rejection

under Hy : 6 € Oy, this is the size of the test, or type | error
under Hy : 6 € ©4, this is the power of the test

Goal: maximize

Bs(0) = Egp(Y) VO € Oy,

subject to
Eop(Y) <, VO€ g
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Neyman-Pearson lemma

» Suppose Qg is the point 6y, and similarly for ©1
» Assume the existence of densities fy and f; with respect to
the same measure p

1. Given 0 < a < 1, there exists a test function ¢ and a
constant k such that

Eop(Y) = o (1)
and 1 when £(y)> kiy(y)
when f(y) > kfy(y),

¢(y):{ 0 when A(y) < kly) )

2. If atest satisfies (1) and (2) for some k, then it is most
powerful for testing fy against f; at level «

3. If ¢ is most powerful at level « for testing fy against f;, then
for some k it satisfies (2), a.e. i, and satisfies (1) unless
there exists a test of size < « and with power 1.
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Proof 1.

» trivialfora=0and a =1 allow k =
» 1. define

Q\'FW >

("

a(c) = Pro{A(Y) > cho(Y)} = PHHECHB0)>—<F

f
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Proof 1. ) |

trivialfora=0and a =1 allow kK = 00 « ’::l.ﬂi

1. define % ¢, ° 2
a(c) = Pro{f(Y) > ch(Y)} = Pr{f(Y)/£)0(Y) > c}.

1 — «(c) is a cumulative distribution function

so «a(c) is non-increasing, right-continuous,

a(—o00) =1,a(c0) =0

Given 0 < o < 1, let ¢y be such thatfa(cg) < o < a(cy)

v

v

vV Yy

v
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Proof 1.

trivial fora = 0 and a = 1 allow k = oo

1. define

a(c) = Pro{fi(Y) > chy(Y)} = Pr{A(Y)/NO(Y) > c}.
1 — «(c) is a cumulative distribution function

so «a(c) is non-increasing, right-continuous,

a(—o00) =1,a(c0) =0

v Yy

vV Yy

Given 0 < o < 1, let ¢p be such that a(cg) < o < a(cy)

) <
1 when  fi(y) > cofo(y)
o(y) = { —2=2%)  when f(y) = coh(y)
)

v Yy

a(Gy )—a(c)
0 when fi(y) < cofo(y)
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Proof 1.

v Yy

vV Yy

v Yy

trivial fora =0and a = 1 allow kK = o
1. define

a(c) = Profh(Y) > cho(Y)} = Pr{f(Y)/0(Y) > c}.

1 — «(c) is a cumulative distribution function
so «a(c) is non-increasing, right-continuous,
a(—o00) =1,a(o00) =0

Given 0 < o < 1, let ¢p be such that a(cg) < o < a(cy)
1 when  fi(y) > cofo(¥)
_ a—a(C)
¢(}/) - a(cy ) —al(co) when  f; (y) - Cofo(}/)
0 when f (y) < Cofo(y)
Eo¢(Y) Pro{ %5 }1— x-«(c.)
<(c; ) o(fc.

,,‘-—
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... proof 2.

» Suppose ¢ is a test satisfying (1) and (2), and that ¢* is
another test with Eq¢*(Y) < .
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» Suppose ¢ is a test satisfying (1) and (2), and that ¢* is
another test with Eq¢*(Y) < a. ,
» Denote by St and S~ the sets in ) where K f
—_h* o ol
¢(y) —¢*(y) > 0and <O0. P
g
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» Denote by St and S~ the sets in ) where
¢(y) — ¢*(y) > 0and < 0.

» In ST, ¢(y) > 0o fi(y) > kfy(y), and

>
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... proof 2.
» Suppose ¢ is a test satisfying (1) and (2), and that ¢* is
another test with Eq¢*(Y) < a.

» Denote by ST and S~ the sets in )) where
¢(y) — ¢*(y) > 0and < 0.
» In ST, ¢(y) > 0so fi(y) > kfy(y), and

>

/ (6 — 6°)(fy — Kfo)dp = / (6 — 6)(fy — kfy)dp > 0

StuS—

» difference in power:

Ry . [o-mduzk [0-6)duz0

g1 £ 1
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... proof 3.
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.. proof 3. + ¥
» Let ¢* be MP level «, and ¢ satisfy (1) and (2 5 f;

» On ST U S, ¢ and ¢* differ. Let 75 < 15
S=8"uS n{y:fi(y)#kfh(y)}, and assume M(S) >0
. SFus™ (2.)

|00 — ko) = [ (6 6")(h — ko) > 0
StUS- s
}S:}{*‘ S
et us)
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.. proof 3. V=g > g ¥
> Let ¢* be MP level o, and ¢ satisfy (1) and (2) ¢~ kﬁ*

» On ST U S, ¢ and ¢* differ. Let
S=STuS n{y:fi(y)#kfh(y)}, and assume u(S) > 0

|00 — ko) = [ (6 6")(h — ko) > 0
S+US— s

» implies ¢ is more powerful than ¢* s S"' }{> fo)

Lg. 70,7’&‘)4
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... proof 3.

>

>

Let ¢* be MP level «, and ¢ satisfy (1) and (2)
On St U S, ¢ and ¢* differ. Let

S=StuS n{y:fily) #kfh(y)}, and assume u(S) > 0
/ (¢ — ¢")(fi — kfy)dp = /(¢>—¢*)(f1 — kfo)dp >0
StUS- S

implies ¢ is more powerful than ¢*
contradiction, hence u(S) =0

if * had size < o and power < 1, could add points to
rejection region until either Eq¢*(Y) = a or E1¢*(Y) = 1
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... proof 3.

>

>

Let ¢* be MP level «, and ¢ satisfy (1) and (2)
On St U S, ¢ and ¢* differ. Let

S=StuS n{y:fily) #kfh(y)}, and assume u(S) > 0
/ (¢ — ¢")(fi — kfy)dp = /(¢>—¢*)(f1 — kfo)dp >0
StUS- S

implies ¢ is more powerful than ¢*
contradiction, hence u(S) =0

if * had size < o and power < 1, could add points to
rejection region until either Eq¢*(Y) = a or E1¢*(Y) = 1

testis unique if {y : fi(y) = kfy(y)} has measure 0
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Comments

discreteness: e.g. Y ~ Bin(n, p)

MP test has rejection region R determined by {y > d,}
not all values of « attainable: e.g. CH Example 4.9

Y ~ Poisson(u)

Hy:p=1, Hi:p=p >1,MPtestY > d,

v

v

v

v

STA 3000F: Nov 29, 2013

6/9



Comments

v

v

discreteness: e.g. Y ~ Bin(n, p)
MP test has rejection region R determined by {y > d,}

» not all values of « attainable: e.g. CH Example 4.9
Y ~ Poisson(u)

» Hy:p=1, Hy:p=p>1,MPtestY >d,
Table : attained significance levels
y Pr(Y>y,pu=1) y Pr(Y>y,pu=1)
0 1 4 0.0189
1 0.632 5 0.0037
2 0.264 6 0.0006
3 0.080 Do

» if critical regions are nested, i.e. Rn, C Ra,, 1 < ap, then

Pobs = Inf(a; Yobs € Ra)
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Comments

» discreteness: e.g. Y ~ Bin(n, p)
» MP test has rejection region R determined by {y > d,}
» not all values of « attainable: e.g. CH Example 4.9

Y ~ Poisson(u) F=¥
» Hy:p=1, Hy:p=p>1,MPtestY >d, ) J
&

r\"/{

Table : attained significance levels
(Y250 - K resstamoionte 17T
y PriY>yip=1) Pr(Y >y;u=1)

y
. o 1 4 00189
et pae : \f 5 d
6

1 0632 0.0037

2 0.264 0.0006 - lj-.
080 s J
' C i v<3 aceff,

» if critical regions are nested, i.e. Rn, C Ra,, 1 < ap, then
Pobs = INf(c; Yobs € Ra)

» asymmetry:
YNN(M71)7HO:M:07H1:M:1O7 .yObS:3

=3

STA 3000F: Nov 29, 2013 6/9


Nancy


Bayesian testing

» simple Hy, simple H;:
Pr(Ho | y) _

see CH Example 10.12

Pr(Hi | y)

Pr(Ho) fo(y) ’fcsihrl!ff
Pr(Hy) fi(y) 2l

= P/‘l’ odd,

xLR
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Bayesian testing

see CH Example 10.12
» simple Hy, simple H;:
Pr(Ho | y) _ Pr(Ho) fo(y)
Pr(Hi|y)  Pr(Hi) fi(y)
» similarly, with Hy, ... Hy potential alternatives

Pr(Ho | y) _ Pr(Ho)fo(y)
Pr(H§ | y) — Z;Pr(H)fi(y)
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Bayesian testing

see CH Example 10.12
» simple Hy, simple H;:
Pr(Ho | y) _ Pr(Ho) h(y) M (s, 1)
Pr(Hi |y)  Pr(H) fi(y)
> similarly, with Hy, . .. Hx potential alternatives & # O,

Pr(Ho | y)  Pr(Ho)f(y)
s ) = ety O VA

» sharp null hypothesis: Hy : 0 = 6y, H;: 6 # 69

Pr(Ho | y) _ o f(y: 6o)
Pr(HG 1 y) (1 —m0) [ m(0)f(y:0)d0 _ ry. g3
’ o+o, KN e 4 &);
g -LO-}‘
"o soly) = Rl
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Bayesian testing

see CH Example 10.12

» simple Hy, simple H;:
Pr(Ho | y) _ Pr(Ho) fo(y)

Pr(Hi [ y) — Pr(Hi) fi(y)

» similarly, with Hy, ...

Hy potential alternatives

Pr(Ho | y) _ Pr(Ho)h(y)

Pr(H§ [y) — LPr(H)fi(y)

» sharp null hypothesis: Hy : 6 =6y, H;: 0 # 6y
Pr(Ho | y)  mo f(y: 0o)

Pr(H§ |y) (1 —mo) [ m1(0)f(y;0)do
» nuisance parameters L ¢< g = (Sb )

Pr(Fo |y) _

o )\|#0 Y\¢o7 )d)\

Pr(HS |y)
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... testing

» Bayes factor Byg =

Pr(y | Hy)

Pr(y [ Ho)

11.2 - Inference

Table 11.3

Interpretation of Baycs
factor Byg in favour of H;
over Hy. Since

By, = By)!, negating the
values of 2log Byg gives
the evidence against Hy.

SM Ch. 11.2

>

B 2log Byp Evidence against Hy
1-3 0-2 Hardly worth a mention
3-20 2-6 Positive

20-150 6-10 Strong

= 150 = 10 Very strong
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... testing + N
» Bayes fact: % -Fo LR 06/ )—L vs H,

> typically Pr(y |'f’71i) = [f(y | H;,0)=(6; | H))db;, i=0,1

3

/‘M?d) @'H") 11.2 - Inference [7';4{9') ?) 46, = PA (

Table 11.3

Interpretation of Bayes B 2log Byp Evidence against Hy
factor Byg in favour of H;

over Hy. Since
By, = By)!, negating the 1-3 0-2 Hardly worth a mention
values of 2log Big gives 3-20 2-6 Positive

the evidence against Hy. 20150 6-10 Strong

CH/ g,( ]]217 L""‘”‘,‘ZJJ .>150 210 Very strong
SM Ch. 11.2 paredsx

>
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» Bayes factor Byg =
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... testing

Pr(y | Hy)
Pr(y | Ho)

» typically Pr(y | b)) = [f(y | H;,0;)m(0; |

» Bayes factor Byg =

11.2 - Inference

Table 11.3

Interpretation of Bayes : ) 2log Bio
factor Byg in favour of Hy

over Hy. Since

Evidence against Hj

By, = By)!, negating the 1-3 0-2 Hardly worth a mention
values of 2 log Bip gives 3-20 26 Positive
the evidence against Hy. 20150 6-10 Strong

= 150 = 10 Very strong

» cannot be computed with improper priors/ a.L
)—)o( Valsd f[iA G . YN(8)() st )< 4
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Nature, PNAS, AoS articles by Johnson

» developed an ‘objective’ Bayesian test for comparison to
p-values
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developed an ‘objective’ Bayesian test for comparison to
p-values

“A p-value of 0.05 or less corresponds to Bayes factors of
between 3 and 5, which are consider weak evidence to
support a finding”

“He advocates for scientists to use more stringent p-values
of 0.005 or less”
see also CH Example 10.12 and SM Example 11.15

emphasis on point hypotheses drives most of these
anomalous results
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Nature, PNAS, AoS articles by Johnson

>

v

developed an ‘objective’ Bayesian test for comparison to
p-values

“A p-value of 0.05 or less corresponds to Bayes factors of
between 3 and 5, which are consider weak evidence to
support a finding”

“He advocates for scientists to use more stringent p-values
of 0.005 or less”

see also CH Example 10.12 and SM Example 11.15
emphasis on point hypotheses drives most of these

anomalous results
e.g. Pr(¢ >0 y)
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