
Lehmann & Romano, TSH Ch. 3
I Setup: define a test function φ(y) from Y to [0,1]
I φ(Y ) = Pr(Y ∈ R)
I if φ(y) = 1 then y ∈ R, if 0, y /∈ R
I allows for the possibility of randomized tests

I if Y ∼ f (y ; θ), then
I Eθφ(Y ) =

∫
φ(y)f (y ; θ)dy = probability of rejection

I under H0 : θ ∈ Θ0, this is the size of the test, or type I error
I under H1 : θ ∈ Θ1, this is the power of the test

I Goal: maximize

βφ(θ) = Eθφ(Y ) ∀θ ∈ Θ1,

subject to
Eθφ(Y ) ≤ α, ∀θ ∈ Θ0
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Neyman-Pearson lemma
I Suppose Θ0 is the point θ0, and similarly for Θ1
I Assume the existence of densities f0 and f1 with respect to

the same measure µ

1. Given 0 ≤ α ≤ 1, there exists a test function φ and a
constant k such that

E0φ(Y ) = α (1)

and

φ(y) =

{
1 when f1(y) > kf0(y),
0 when f1(y) < kf0(y).

(2)

2. If a test satisfies (1) and (2) for some k , then it is most
powerful for testing f0 against f1 at level α

3. If φ is most powerful at level α for testing f0 against f1, then
for some k it satisfies (2), a.e. µ, and satisfies (1) unless
there exists a test of size < α and with power 1.
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Proof 1.
I trivial for α = 0 and α = 1 allow k =∞
I 1. define
α(c) = Pr0{f1(Y ) > cf0(Y )} = Pr{f1(Y )/f )0(Y ) > c}.

I 1− α(c) is a cumulative distribution function
I so α(c) is non-increasing, right-continuous,
α(−∞) = 1, α(∞) = 0

I Given 0 < α < 1, let c0 be such that α(c0) ≤ α ≤ α(c−0 )
I

φ(y) =


1 when f1(y) > c0f0(y)

α−α(c0)

α(c−
0 )−α(c0)

when f1(y) = c0f0(y)

0 when f1(y) < c0f0(y)
I

E0φ(Y ) = Pr0

{
f1(Y )

f0(Y )

}
+
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... proof 2.
I Suppose φ is a test satisfying (1) and (2), and that φ∗ is

another test with E0φ
∗(Y ) ≤ α.

I Denote by S+ and S− the sets in Y where
φ(y)− φ∗(y) > 0 and < 0.

I In S+, φ(y) > 0 so f1(y) ≥ kf0(y), and
I ∫

(φ− φ∗)(f1 − kf0)dµ =

∫
S+∪S−

(φ− φ∗)(f1 − kf0)dµ ≥ 0

I difference in power:∫
(φ− φ∗)f1dµ ≥ k

∫
(φ− φ∗)f0dµ ≥ 0
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... proof 3.
I Let φ∗ be MP level α, and φ satisfy (1) and (2)
I On S+ ∪ S−, φ and φ∗ differ. Let

S = S+ ∪ S− ∩ {y : f1(y) 6= kf0(y)}, and assume µ(S) > 0
I ∫

S+∪S−
(φ− φ∗)(f1 − kf0)dµ =

∫
S

(φ− φ∗)(f1 − kf0)dµ > 0

I implies φ is more powerful than φ∗

I contradiction, hence µ(S) = 0

I if φ∗ had size < α and power < 1, could add points to
rejection region until either E0φ

∗(Y ) = α or E1φ
∗(Y ) = 1

I test is unique if {y : f1(y) = kf0(y)} has measure 0
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Comments
I discreteness: e.g. Y ∼ Bin(n,p)
I MP test has rejection region R determined by {y > dα}
I not all values of α attainable: e.g. CH Example 4.9

Y ∼ Poisson(µ)
I H0 : µ = 1, H1 : µ = µ1 > 1, MP test Y ≥ dα

Table : attained significance levels

y Pr(Y > y ;µ = 1) y Pr(Y > y ;µ = 1)
0 1 4 0.0189
1 0.632 5 0.0037
2 0.264 6 0.0006

3 0.080
...

...

I if critical regions are nested, i.e. Rα1 ⊂ Rα2 , α1 < α2, then
pobs = inf(α; yobs ∈ Rα)

I asymmetry:
Y ∼ N(µ,1),H0 : µ = 0,H1 : µ = 10, yobs = 3
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y Pr(Y > y ;µ = 1) y Pr(Y > y ;µ = 1)
0 1 4 0.0189
1 0.632 5 0.0037
2 0.264 6 0.0006

3 0.080
...

...

I if critical regions are nested, i.e. Rα1 ⊂ Rα2 , α1 < α2, then
pobs = inf(α; yobs ∈ Rα)

I asymmetry:
Y ∼ N(µ,1),H0 : µ = 0,H1 : µ = 10, yobs = 3
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Bayesian testing
see CH Example 10.12

I simple H0, simple H1:
Pr(H0 | y)

Pr(H1 | y)
=

Pr(H0)

Pr(H1)

f0(y)

f1(y)

I similarly, with H1, . . .Hk potential alternatives
Pr(H0 | y)

Pr(Hc
0 | y)

=
Pr(H0)f0(y)

ΣjPr(Hj)fj(y)

I sharp null hypothesis: H0 : θ = θ0, H1 : θ 6= θ0

Pr(H0 | y)

Pr(Hc
0 | y)

=
π0

(1− π0)

f (y ; θ0)∫
π1(θ)f (y ; θ)dθ

I nuisance parameters
Pr(H0 | y)

Pr(Hc
0 | y)

=
π0

(1− π0)

π(λ | h0)f (y | ψ0, λ)dλ∫ ∫
π(ψ, λ | H1)f (y | ψ, λ)dψdλ
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... testing
I Bayes factor B10 =

Pr(y | H1)

Pr(y | H0)

I typically Pr(y | hi) =
∫

f (y | Hi , θi)π(θi | Hi)dθi , i = 0,1

SM Ch. 11.2
I cannot be computed with improper priors
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Nature, PNAS, AoS articles by Johnson
I developed an ‘objective’ Bayesian test for comparison to

p-values
I “A p-value of 0.05 or less corresponds to Bayes factors of

between 3 and 5, which are consider weak evidence to
support a finding”

I “He advocates for scientists to use more stringent p-values
of 0.005 or less”

I see also CH Example 10.12 and SM Example 11.15

I emphasis on point hypotheses drives most of these
anomalous results

I e.g. Pr(θ > 0 | y)
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