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Models and likelihood
I Model for the probability distribution of y given x
I Density f (y | x) with respect to, e.g., Lebesgue measure
I Parameters for the density f (y | x ; θ), θ = (θ1, . . . , θd)

I Likelihood function L(θ; y0) ∝ f (y0; θ)

I often θ = (ψ, λ)

I θ could have very large dimension, d > n
typically y = (y1, . . . , yn)

I θ could have infinite dimension E(y | x) = θ(x) ‘smooth’,
in principle
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Why likelihood?
I makes probability modelling central
I emphasizes the inverse problem of reasoning

from y0 to θ or f (·)
I suggested by Fisher as a measure of plausibility

Royall, 1994
L(θ̂)/L(θ) ∈ (1,3) very plausible;
L(θ̂)/L(θ) ∈ (3,10) implausible;
L(θ̂)/L(θ) ∈ (10,∞) very implausible

I converts a ‘prior’ probability π(θ) to a posterior π(θ | y) via
Bayes’ Theorem

I provides a conventional set of summary quantities for
inference based on properties of the postulated model
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Widely used
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... widely used

National Post, Toronto, Jan 30 2008
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... why likelihood?
I likelihood function depends on data only through sufficient

statistics
I “likelihood map is sufficient” Fraser & Naderi, 2006

I gives exact inference in transformation models
I “likelihood function as pivotal” Hinkley, 1980

I provides summary statistics with known limiting distribution
I leading to approximate pivotal functions, based on normal

distribution
I likelihood function + sample space derivative gives better

approximate inference
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Derived quantities
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I maximum likelihood estimator
θ̂ = arg supθ log L(θ; y)
= arg supθ`(θ; y)

I observed Fisher information
j(θ̂) = −∂2`(θ)/∂θ2

I efficient score function
`′(θ) = ∂`(θ; y)/∂θ

`′(θ̂) = 0 assuming enough regularity

I `′(θ; y) =
∑n

i=1 log fYi (yi ; θ), y1, . . . , yn independent
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Approximate pivots scalar parameter of interest

I profile log-likelihood `p(ψ) = `(ψ, λ̂ψ)

I θ = (ψ, λ); λ̂ψ constrained maximum likelihood estimator

re(ψ; y) = (ψ̂ − ψ)j1/2
p (ψ̂)

.∼ N(0,1)

r(ψ; y) = ±
√
[2{`p(ψ̂)− `p(ψ)}]

.∼ N(0,1)

πm(ψ | y)
.∼ N{ψ̂, j−1/2

p (ψ̂)}

jp(ψ) = −`′′p(ψ); profile information
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The problem with profiling
I `p(ψ) = `(ψ, λ̂ψ) used as a ‘regular’ likelihood, with the

usual asymptotics
I neglects errors in the estimation of the nuisance parameter
I can be very large when there are many nuisance

parameters

I example: normal theory linear regression σ̂2 = RSS/n
usual estimator RSS/(n − k) k the number of regression
coefficients

I badly biased if k large relative to n
I inconsistent for σ2 if k →∞ with n fixed
I example fitting of smooth functions with large numbers of

spline coefficients
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Conditional and marginal likelihoods

f (y ;ψ, λ) ∝ f1(s | t ;ψ)f2(t ;λ)

I L(ψ, λ) ∝ Lc(ψ)Lm(λ), where L1 and L2 are genuine
likelihoods, i.e. proportional to genuine density functions

I Lp(ψ) is a conditional likelihood Lc(ψ), and estimation of λ
has no impact on asymptotic properties

I s is conditionally sufficient , t is marginally ancillary, for ψ

I hardly ever get so lucky
I but might expect something like this to hold approximately,

which it does, and this is implemented in r∗F formula
automatically Brazzale, Davison, R 2007
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