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Statistical Models

“Y is a random variable with density function f(y; θ) or f(y)”.
This is the starting point for most of the material to be covered. Typically Y will

be a scalar random variable or a vector random variable of length n, and f(y; θ) will
be a density function with respect to counting measure or Lebesgue measure. The
problem is to reason from observed data y back to θ or f(·). In more complicated
problems, such as observations taken in continuous time, the definitions of Y and
its density may not be obvious.

In advanced texts this is often formulated from a measure-theoretic point of view.
We have a so-called “probability triple” (Y ,A,P), where Y is the sample space, typ-
ically identified with R

n or R, A is the Borel σ-field, and P is a probability measure
which is absolutely continuous with respect to Lebesgue or counting measure. A
very concise but helpful account is given in Chapter 1.2 and 1.3 of TPE. (I found
two typos: on p.8, l.-2 “Example 2.1” should be “Example 2.2”, p.16, 2nd display
should be E(T ) =

∫

T (x)dPY (x).)
A simple set of examples of such models might be the following:

1. Yi = α + βzi + ǫi, i = 1, . . . n, where zi are known constants, and ǫ1, . . . ǫn
are assumed to be independent, identically distributed, with each following a
N(0, 1) distribution. Then

f(y; θ) =
1√
(2π)n

exp−1

2

∑

(yi − α− βzi)
2

and θ = (α, β).

2. Yi = α + βzi + ǫi, i = 1, . . . n, where zi are known constants, and ǫ1, . . . ǫn
are assumed to be independent, identically distributed, with each following
the density f0(e) or f0(e; ν) where the form of f0 is known (possibly up to an
unknown number of parameters).

3. Yi = α + βzi + ǫi, i = 1, . . . n, where zi are known constants, and ǫ1, . . . ǫn
are assumed to be independent, identically distributed, with each following an
unknown density f that satisfies some smoothness conditions

4. Yi = α + βzi + ǫi, i = 1, . . . n, where zi are known constants, and ǫ =
(ǫ1, . . . ǫn) follows a known (up to parameters) joint distribution f0(ǫ; ν)

5. Yi = µ(zi) + ǫi, i = 1, . . . n, where zi are known constants, and ǫ1, . . . ǫn
are assumed to be independent, identically distributed, with each following an
unknown density f that satisfies some smoothness conditions
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In general we would expect to require that the dimension of the data, n, be greater
than the dimension of the parameter space, in order to construct inference about the
parameter. This is not strictly true, as for example in cases 3 and 5 the dimension of
the parameter space is a space of unknown functions, and hence effectively infinite,
yet progress can be made via smoothing techniques. Model 3 is an example of a
semiparametric model, and Model 5 a nonparametric model. Most models consid-
ered in this half of the course will be parametric models, with a parameter θ taking
values in a p-dimensional space Θ, typically (a subset of) Rp.
The likelihood function

Given a random variable Y and its density function f(y; θ), the likelihood function
is defined to be

L(θ; y) = c(y)f(y; θ),

i.e. any function proportional to the density function evaluated at the observed
value of the random variable. (There is really an equivalence class of likelihood
functions, all differing by arbitrary multiplicative constants that may depend on y
but may not depend on θ.)

The likelihood function is invariant under one to one transformations of Y not
involving θ. Suppose Z = g(Y ), then

fZ(z; θ) = fY {g−1(z); θ}|dg−1(z)/dz|
showing that the likelihood function based on Z is in the same equivalence class as
the likelihood function based on Y .

Examples:

1. Y1, . . . , Yn i.i.d. Bernoulli (p):

L(p; y) =
∏

pyi(1− p)1−yi = p
∑

yi(1− p)n−
∑

yi

2. R follows Binomial(n, p):

L(p; r) =

(

n

r

)

pr(1− p)n−r

3. Y follows a Negative Binomial(r, p):

L(p;n) =

(

n− 1

r − 1

)

pr(1− p)n−r

Note that in (a)
∑

yi is a sufficient statistic (determines the likelihood func-
tion), and that the likelihood functions in (a), (b) and (c) are in the same
equivalence class, showing in particular that the likelihood function is unaf-
fected by the sampling rule. This is true in general, and has generated much
discussion in the literature. However if we are interested in the distribution
of the random function L(θ; Y ) or quantities derived from it, this distribution
will depend on the sampling rule.
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4. Y1, . . . Yn i.i.d. N(µ, σ2):

L(µ, σ2; y) =

(

1√
(2π)σ

)n

exp{− 1

2σ2

∑

(yi − µ)/σ2}

= σ−n exp−(

∑

y2i
2σ2

+
µ
∑

yi
σ2

− nµ2

2σ2
)

= σ−n exp{−
∑

(yi − ȳ)2

2σ2
− n(ȳ − µ)2

2σ2
}

Note that the likelihood function depends only on (
∑

y2i ,
∑

yi), or equivalently
(ȳ,

∑

(yi − ȳ)2), and in particular if σ2 is assumed to be known, that the
likelihood function for µ depends only on ȳ.

5. Nonhomogeneous Poisson process

Consider a Poisson process with rate function ρ(t) observed over the interval
[0, t0). Denoting the process by {N(t), 0 ≤ t ≤ t0}, by definition

(a) pr[N(t + h) = N(t) + 1|{N(t), t ≥ 0}] = ρ(t)h + o(h)

(b) pr[N(t + h) = N(t)|{N(t), t ≥ 0}] = 1− ρ(t)h+ o(h)

(c) pr[N(t + h) ≥ N(t) + 2|{N(t), t ≥ 0}] = o(h)

Thus if we observe {N(t)} to increase by 1 at points y1, . . . yn, and to be
constant at all other points in the interval [0, t0) the joint probability of this
is

L{ρ(·)} =
n
∏

i=1

ρ(yi)h
∗
∏

{1− ρ(aj)h}{1 + o(1)}

= hn
n
∏

i=1

ρ(yi) exp
∗

∑

log{1− ρ(aj)h}{1 + o(1)}

= hn

n
∏

i=1

ρ(yi) exp

∗
∑

{−ρ(aj)h}{1 + o(1)}

≈
n
∏

i=1

ρ(yi) exp{−
∫ t0

0

ρ(y)dy}

where the approximation in the last line comes from taking the limit as h → 0,
and we drop the factor hn without changing the equivalence class.

The properties i.–iii. are the defining properties of the nonhomogeneous Pois-
son process, and also define the rate function ρ(·). This function would nor-
mally be parametrized by a relatively small number of parameters, such as
ρ(t) = exp(θ0 + θ1t) or ρ(t) = θ. In the latter case we get

L(θ) = θn exp(−θt0)
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which is the same likelihood function as that for a sample of n independent
observations from the exponential density

f(y; θ) = θ exp(−θy)

with observed total failure time t0 =
∑

yi.

Exercise: Verify the last remark. Give the expression for the likelihood func-
tion when ρ(t) = exp(θ0 + θ1t).

Exponential Families

The family {Fθ; θ ∈ Θ ⊂ Rm} is called an exponential family if the distributions
have densities of the form

f(y; θ) = exp{φ(θ)T t(y)− c(θ)− d(y)}

= exp{
m
∑

1

φj(θ)tj(y)− c(θ)− d(y)} (1)

with respect to a common measure µ (usually Lebesgue measure). In canonical form
we have the family {Fφ;φ ∈ Φ} with densities

f(y;φ) = exp{φT t(y)− c(φ)− d(y)} (2)

where c(φ) = c{φ(θ)}. If Θ is such that Φ is the set

{φ :

∫

exp{φT t(y)− d(y)}dy < ∞},

then the exponential family has full rank. If Φ is also open then the (full) exponential
family is called regular.

If the components of φ satisfy a linear constraint, then it will clearly be possible
to re-write the family of densities in terms of a parameter of m− 1 components and
a set of m− 1 sufficient statistics, so we usually assume this is not possible.

A curved exponential family is formed when the components of φ satisfy one or
more nonlinear constraints. In that case the dimension of Φ will be smaller than m,
and could most conveniently be specified by writing φ = φ(θ), θ ∈ Θ ⊂ Rd, d < m.

Sampling from an exponential family

Suppose Y1, . . . , Yn are independent, identically distributed, each with a distri-
bution of the form (2). Then the joint density of Y = (Y1, . . . , Yn) at y = (y1, . . . , yn)
is

f(y;φ) = exp{φ1

∑

i

t1(yi) + · · ·+ φm

∑

i

tm(yi)− nc(φ)−
∑

d(yi)}

showing that T = t(Y ) = {∑i t1(yi), . . . ,
∑

i tm(yi)} is minimal sufficient for φ in a
full exponential family (assuming there is no linear constraint on the φ).
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The marginal density of T is again of exponential family form:

f(t;φ) = exp{φ1t1 + · · ·+ φmtm − nc(φ)− h(t)} = exp{φT t− nc(φ)− h(t)}

which can be verified by writing

f(t;φ) =

∫

{x:t(y)=t}

f(y;φ)dy

=

∫

{x:t(y)=t}

exp{φ1

∑

i

t1(yi) + · · ·+ φm

∑

i

tm(yi)− c(φ)− d(y)}dy

= exp{φT t− nc(φ)}
∫

{x:t(y)=t}

exp{d(y)}dy

= exp{φT t− nc(φ)− h(t)} (3)

showing also that the cumulant generating function for T is KT (α) = nKY (α) =
n{c(α + φ)− c(φ)}.

Example of a curved exponential family

Suppose Y follows a bivariate normal distribution with mean 0, and variance-
covariance matrix

(

1 ρ
ρ 1

)

.

The density is thus

f(y; ρ) = (2π)−1(1− ρ2)−1/2 exp{− 1

2(1− ρ2)
(y21 − 2ρy1y2 + y22)}

= exp{−1

2
(1− ρ2)−1(y21 + y22) + ρ(1− ρ2)−1y1y2 −

1

2
log(1− ρ2)− log(2π)}

which is a (2, 1) exponential family. In i.i.d. sampling the statistic T = t(Y ) =
{
∑

(Y 2
1i + Y 2

2i),
∑

(Y1iY2i)} is minimal sufficient for the parameter ρ.

References

TPE has a discussion of curved exponential families, but it is not very detailed,
and in particular they allow ’curved’ exponential families to be defined by linear
relationships among the φi, as in Example 5.5, which would normally be considered
a full exponential family with a two-dimensional sufficient statistic. BNC has an
introduction in Chapter 1. SM §5.2 defines exponential families by ‘exponential
tilting’ of a base density f0(·), but then quickly moves to the general definition,
given at equation (5.9).

A measure-theoretic treatment can be found in the book Fundamentals of Sta-

tistical Exponential Families, by L.D. Brown, IMS Lecture Notes-Monograph Series
Volume 9 (1986), and Schervish, Ch. 2.2.
Transformation models
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Location models A one parameter family of distributions on R is said to be a location
family if the density function f(y; θ) takes the form f0(y−θ), for −∞ < θ < ∞. The
density f0(y) is the standard form of the density and θ is the location parameter.
Examples The normal distribution with mean θ and known variance is a location
family. The tν distribution with density function given by

f(y; θ) = c{1 + (y − θ)2

ν
}−(ν+1)/2

is also a location family. The standard form of the density is just the usual tν density.
The Cauchy distribution is a special case of this. The exponential location density
is

f(y; θ) = e−(y−θ) , y − θ ≥ 0;

note that the support of the density is the interval (θ,∞), although θ can be any
real value. Members of the same location family are simply shifted along the axis,
relative to each other, and all have the same shape.

Scale models A one parameter family of distributions on R is said to be a scale
family if the density function f(y; θ) takes the form θ−1f0(y/θ), for 0 < θ < ∞. The
density f0(y) is the standard form of the density and θ is the scale parameter.
Examples The normal distribution with known mean and unknown variance is a
scale family. The gamma distribution with known shape parameter is a scale family.
A special case of this is the simple exponential distribution:

f(y; θ) = θ−1 exp(−y/θ); y > 0.

Note that Z = log(Y ) has the density function

g(z; η) = exp{z − η − e(z−η)}; −∞ < z < ∞

where η = log θ; this is a location family.

Location-scale models A one parameter family of distributions on R is said to be a
location-scale family if the density function f(y; θ) takes the form θ−1

2 f0((y−θ1)/θ2),
for −∞ < θ1 < ∞, 0 < θ2 < ∞. The density f0(y) is the standard form of the
density, θ1 is the location parameter and θ2 is the scale parameter.
Examples The normal distribution with mean θ1 and variance θ22 is a location scale
family, and the standard normal is the standard form. The tν(θ1, θ2) is

f(t; θ) = c{1 + (y − θ1)
2/νθ2}−(ν+1)/2

and the logistic(θ1, θ2) density is

f(y; θ) =
e−(y−θ1)/θ2

{1 + e−(y−θ1)/θ2}2 .

It is more conventional to use µ and σ for the location and scale parameter,
although they do not always correspond to the mean and variance of the distribution.
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Any continuous density on R can be embedded in a location-scale family, and in
fact most location-scale families are constructed this way. It is easily proved that if
the distribution of the random variable Y is a member of the location-scale family,
then it can be expressed as

Y = θ2Z + θ1

where Z has the standard distribution with density function f0(z).
Note that discrete distributions are not members of the location-scale family,

essentially because the parameter space and the variable must take values on the
same space.
Transformation families The location, scale and location-scale families are examples
of transformation families. The basic idea is that a transformation on the sample
space has a corresponding transformation on the parameter space that leaves the
density function unchanged. For example, if Y has the density f0(y − θ), then
Z = Y + a has the density f0(z − a− θ) = f0(z − θ′) so the family of densities for
Y ,{f0(y − θ); θ ∈ R}, is is the same as that for Z = Y + a. Similarly, the family
of location-scale densities is unchanged under location and scale transformations: if
f(y; θ) = θ−1

2 f0((y−θ1)/θ2) then Z = cY +a has density f(z; θ′) = θ′−1
2 f0((z−θ′1)/θ

′
2)

where θ′1 = cθ1 + a and θ′2 = cθ2.
In general, we denote by g a transformation on the sample space Y , and by g∗

the induced transformation on the parameter space. Then the formalization of the
above is the statement that

pr(gY ∈ A; θ) = pr(Y ∈ A; g∗θ).

If g∗Θ = Θ, the family of densities indexed by θ ∈ Θ in invariant under the transfor-
mation g on Y . Let C be a class of transformations on Y satisfying this condition, and
G the smallest class containing C that is a group. Then G∗ = {g∗ induced by g ∈ G}
is a group on Θ.
Example: linear regression A generalization of the location-scale model is the re-
gression model

y = Xβ + σǫ

where y is a vector of length n, X is a known n×p matrix, β is a vector of unknown
parameters of length p, ǫ is a vector of length n that follows a known distribution
f0(·). If we let y∗ = Xb+ cy, where b ∈ Rp and c > 0, then we can write

y∗ = X(b+ cβ) + cσǫ

which is a member of the same family, as long as the parameter space is Rp ×R+.
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