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UNIFORMLY MOST POWERFUL BAYESIAN TESTS

BY VALEN E. JOHNSON1

Texas A&M University

Uniformly most powerful tests are statistical hypothesis tests that pro-
vide the greatest power against a fixed null hypothesis among all tests of a
given size. In this article, the notion of uniformly most powerful tests is ex-
tended to the Bayesian setting by defining uniformly most powerful Bayesian
tests to be tests that maximize the probability that the Bayes factor, in fa-
vor of the alternative hypothesis, exceeds a specified threshold. Like their
classical counterpart, uniformly most powerful Bayesian tests are most eas-
ily defined in one-parameter exponential family models, although extensions
outside of this class are possible. The connection between uniformly most
powerful tests and uniformly most powerful Bayesian tests can be used to
provide an approximate calibration between p-values and Bayes factors. Fi-
nally, issues regarding the strong dependence of resulting Bayes factors and
p-values on sample size are discussed.

1. Introduction. Uniformly most powerful tests (UMPTs) were proposed
by Neyman and Pearson in a series of articles published nearly a century ago
[e.g., Neyman and Pearson (1928, 1933); see Lehmann and Romano (2005) for
a comprehensive review of the subsequent literature]. They are defined as statis-
tical hypothesis tests that provide the greatest power among all tests of a given
size. The goal of this article is to extend the classical notion of UMPTs to the
Bayesian paradigm through the definition of uniformly most powerful Bayesian
tests (UMPBTs) as tests that maximize the probability that the Bayes factor against
a fixed null hypothesis exceeds a specified threshold. This extension is important
from several perspectives.

From a classical perspective, the outcome of a hypothesis test is a decision ei-
ther to reject the null hypothesis or not to reject the null hypothesis. This approach
to hypothesis testing is closely related to Popper’s theory of critical rationalism, in
which scientific theories are never accepted as being true, but instead are only sub-
jected to increasingly severe tests [e.g., Mayo and Spanos (2006), Popper (1959)].
Many scientists and philosophers, notably Bayesians, find this approach unsatis-
factory for at least two reasons [e.g., Howson and Urbach (2005), Jeffreys (1939)].
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TABLE 1
Probabilities of a random variable under competing hypotheses

X 1 2 3

Null hypothesis 0.99 0.008 0.001
Alternative hypothesis 0.01 0.001 0.989

First, a decision not to reject the null hypothesis provides little quantitative infor-
mation regarding the truth of the null hypothesis. Second, the rejection of a null
hypothesis may occur even when evidence from the data strongly support its valid-
ity. The following two examples—one contrived and one less so—illustrate these
concerns.

The first example involves a test for the distribution of a random variable X that
can take values 1, 2 or 3; cf. Berger and Wolpert (1984). The probability of each
outcome under two competing statistical hypotheses is provided in Table 1. From
this table, it follows that a most powerful test can be defined by rejecting the null
hypothesis when X = 2 or 3. Both error probabilities of this test are equal to 0.01.

Despite the test’s favorable operating characteristics, the rejection of the null hy-
pothesis for X = 2 seems misleading: X = 2 is 8 times more likely to be observed
under the null hypothesis than it is under the alternative. If both hypotheses were
assigned equal odds a priori, the null hypothesis is rejected at the 1% level of sig-
nificance even though the posterior probability that it is true is 0.89. As discussed
further in Section 2.1, such clashes between significance tests and Bayesian poste-
rior probabilities can occur in variety of situations and can be particularly troubling
in large sample settings.

The second example represents a stylized version of an early phase clinical trial.
Suppose that a standard treatment for a disease is known to be successful in 25%
of patients, and that an experimental treatment is concocted by supplementing the
standard treatment with the addition of a new drug. If the supplemental agent has
no effect on efficacy, then the success rate of the experimental treatment is assumed
to remain equal to 25% (the null hypothesis). A single arm clinical trial is used
to test this hypothesis. The trial is based on a one-sided binomial test at the 5%
significance level. Thirty patients are enrolled in the trial.

If y denotes the number of patients who respond to the experimental treatment,
then the critical region for the test is y ≥ 12. To examine the properties of this test,
suppose first that y = 12, so that the null hypothesis is rejected at the 5% level. In
this case, the minimum likelihood ratio in favor of the null hypothesis is obtained
by setting the success rate under the alternative hypothesis to 12/30 = 0.40 (in
which case the power of the test is 0.57). That is, if the new treatment’s success
rate were defined a priori to be 0.4, then the likelihood ratio in favor of the null



1718 V. E. JOHNSON

hypothesis would be

Lmin = 0.25120.7518

0.4120.618 = 0.197.(1)

For any other alternative hypothesis, the likelihood ratio in favor of the null hy-
pothesis would be larger than 0.197 [e.g., Edwards, Lindman and Savage (1963)].
If equal odds are assigned to the null and alternative hypothesis, then the posterior
probability of the null hypothesis is at least 16.5%. In this case, the null hypothe-
sis is rejected at the 5% level of significance even though the data support it. And,
of course, the posterior probability of the null hypothesis would be substantially
higher if one accounted for the fact that a vast majority of early phase clinical trials
fail.

Conversely, suppose now that the trial data provide clear support of the null
hypothesis, with only 7 successes observed during the trial. In this case, the null
hypothesis is not rejected at the 5% level, but this fact conveys little information
regarding the relative support that the null hypothesis received. If the alternative
hypothesis asserts, as before, that the success rate of the new treatment is 0.4, then
the likelihood ratio in favor of the null hypothesis is 6.31; that is, the data favor
the null hypothesis with approximately 6:1 odds. If equal prior odds are assumed
between the two hypotheses, then the posterior probability of the null hypothesis
is 0.863. Under the assumption of clinical equipoise, the prior odds assigned to
the two hypotheses are assumed to be equal, which means the only controversial
aspect of reporting such odds is the specification of the alternative hypothesis.

For frequentists, the most important aspect of the methodology reported in this
article may be that it provides a connection between frequentist and Bayesian test-
ing procedures. In one-parameter exponential family models with monotone likeli-
hood ratios, for example, it is possible to define a UMPBT with the same rejection
region as a UMPT. This means that a Bayesian using a UMPBT and a frequentist
conducting a significance test will make identical decisions on the basis of the ob-
served data, which suggests that either interpretation of the test may be invoked.
That is, a decision to reject the null hypothesis at a specified significance level oc-
curs only when the Bayes factor in favor of the alternative hypothesis exceeds a
specified evidence level. This fact provides a remedy to the two primary deficien-
cies of classical significance tests—their inability to quantify evidence in favor of
the null hypothesis when the null hypothesis is not rejected, and their tendency
to exaggerate evidence against the null when it is. Having determined the corre-
sponding UMPBT, Bayes factors can be used to provide a simple summary of the
evidence in favor of each hypothesis.

For Bayesians, UMPBTs represent a new objective Bayesian test, at least when
objective Bayesian methods are interpreted in the broad sense. As Berger (2006)
notes, “there is no unanimity as to the definition of objective Bayesian analy-
sis. . . ” and “many Bayesians object to the label ‘objective Bayes,”’ preferring
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other labels such as “noninformative, reference, default, conventional and non-
subjective.” Within this context, UMPBTs provide a new form of default, nonsub-
jective Bayesian tests in which the alternative hypothesis is determined so as to
maximize the probability that a Bayes factor exceeds a specified threshold. This
threshold can be specified either by a default value—say 10 or 100—or, as indi-
cated in the preceding discussion, determined so as to produce a Bayesian test that
has the same rejection region as a classical UMPT. In the latter case, UMPBTs
provide an objective Bayesian testing procedure that can be used to translate the
results of classical significance tests into Bayes factors and posterior model prob-
abilities. By so doing, UMPBTs may prove instrumental in convincing scientists
that commonly-used levels of statistical significance do not provide “significant”
evidence against rejected null hypotheses.

Subjective Bayesian methods have long provided scientists with a formal mech-
anism for assessing the probability that a standard theory is true. Unfortunately,
subjective Bayesian testing procedures have not been—and will likely never be—
generally accepted by the scientific community. In most testing problems, the
range of scientific opinion regarding the magnitude of violations from a standard
theory is simply too large to make the report of a single, subjective Bayes factor
worthwhile. Furthermore, scientific journals have demonstrated an unwillingness
to replace the report of a single p-value with a range of subjectively determined
Bayes factors or posterior model probabilities.

Given this reality, subjective Bayesians may find UMPBTs useful for commu-
nicating the results of Bayesian tests to non-Bayesians, even when a UMPBT is
only one of several Bayesian tests that are reported. By reducing the controversy
regarding the specification of prior densities on parameter values under individual
hypotheses, UMPBTs can also be used to focus attention on the specification of
prior probabilities on the hypotheses themselves. In the clinical trial example de-
scribed above, for example, the value of the success probability specified under the
alternative hypothesis may be less important in modeling posterior model proba-
bilities than incorporating information regarding the outcomes of previous trials on
related supplements. Such would be the case if numerous previous trials of similar
agents had failed to provide evidence of increased treatment efficacy.

UMPBTs possess certain favorable properties not shared by other objective
Bayesian methods. For instance, most objective Bayesian tests implicitly define lo-
cal alternative prior densities on model parameters under the alternative hypothesis
[e.g., Berger and Pericchi (1996), Jeffreys (1939), O’Hagan (1995)]. As demon-
strated in Johnson and Rossell (2010), however, the use of local alternative priors
makes it difficult to accumulate evidence in favor of a true null hypothesis. This
means that many objective Bayesian methods are only marginally better than clas-
sical significance tests in summarizing evidence in favor of the null hypothesis.
For small to moderate sample sizes, UMPBTs produce alternative hypotheses that
correspond to nonlocal alternative prior densities, which means that they are able
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to provide more balanced summaries of evidence collected in favor of true null and
true alternative hypotheses.

UMPBTs also possess certain unfavorable properties. Like many objective
Bayesian methods, UMPBTs can violate the likelihood principle, and their be-
havior in large sample settings can lead to inconsistency if evidence thresholds
are held constant. And the alternative hypotheses generated by UMPBTs are nei-
ther vague nor noninformative. Further comments and discussion regarding these
issues are provided below.

In order to define UMPBTs, it useful to first review basic properties of Bayesian
hypothesis tests. In contrast to classical statistical hypothesis tests, Bayesian hy-
pothesis tests are based on comparisons of the posterior probabilities assigned to
competing hypotheses. In parametric tests, competing hypotheses are character-
ized by the prior densities that they impose on the parameters that define a sam-
pling density shared by both hypotheses. Such tests comprise the focus of this
article. Specifically, it is assumed throughout that the posterior odds between two
hypotheses H1 and H0 can be expressed as

P(H1 | x)

P(H0 | x)
= m1(x)

m0(x)
× p(H1)

p(H0)
,(2)

where BF10(x) = m1(x)/m0(x) is the Bayes factor between hypotheses H1
and H0,

mi(x) =
∫
�

f (x | θ)πi(θ | Hi)dθ(3)

is the marginal density of the data under hypothesis Hi , f (x | θ) is the sampling
density of data x given θ , πi(θ | Hi) is the prior density on θ under Hi and p(Hi)

is the prior probability assigned to hypothesis Hi , for i = 0,1. The marginal prior
density for θ is thus

π(θ) = π0(θ | H0)P (H0) + π1(θ | H1)p(H1).

When there is no possibility of confusion, πi(θ | Hi) will be denoted more simply
by πi(θ). The parameter space is denoted by � and the sample space by X . The
logarithm of the Bayes factor is called the weight of evidence. All densities are
assumed to be defined with respect to an appropriate underlying measure (e.g.,
Lebesgue or counting measure).

Finally, assume that one hypothesis—the null hypothesis H0—is fixed on the
basis of scientific considerations, and that the difficulty in constructing a Bayesian
hypothesis test arises from the requirement to specify an alternative hypothesis.
This assumption mirrors the situation encountered in classical hypothesis tests in
which the null hypothesis is known, but no alternative hypothesis is defined. In the
clinical trial example, for instance, the null hypothesis corresponds to the assump-
tion that the success probability of the new treatment equals that of the standard
treatment, but there is no obvious value (or prior probability density) that should
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be assigned to the treatment’s success probability under the alternative hypothesis
that it is better than the standard of care.

With these assumptions and definitions in place, it is worthwhile to review a
property of Bayes factors that pertains when the prior density defining an alter-
native hypothesis is misspecified. Let πt(θ | H1) = πt(θ) denote the “true” prior
density on θ under the assumption that the alternative hypothesis is true, and let
mt(x) denote the resulting marginal density of the data. In general πt(θ) is not
known, but it is still possible to compare the properties of the weight of evidence
that would be obtained by using the true prior density under the alternative hy-
pothesis to those that would be obtained using some other prior density. From a
frequentist perspective, πt might represent a point mass concentrated on the true,
but unknown, data generating parameter. From a Bayesian perspective, πt might
represent a summary of existing knowledge regarding θ before an experiment is
conducted. Because πt is not available, suppose that π1(θ | H1) = π1(θ) is instead
used to represent the prior density, again under the assumption that the alternative
hypothesis is true. Then it follows from Gibbs’s inequality that∫

X
mt(x) log

[
mt(x)

m0(x)

]
dx −

∫
X

mt(x) log
[
m1(x)

m0(x)

]
dx

=
∫

X
mt(x) log

[
mt(x)

m1(x)

]
dx

≥ 0.

That is, ∫
X

mt(x) log
[
mt(x)

m0(x)

]
dx ≥

∫
X

mt(x) log
[
m1(x)

m0(x)

]
dx,(4)

which means that the expected weight of evidence in favor of the alternative hy-
pothesis is always decreased when π1(θ) differs from πt(θ) (on a set with measure
greater than 0). In general, the UMPBTs described below will thus decrease the
average weight of evidence obtained in favor of a true alternative hypothesis. In
other words, the weight of evidence reported from a UMPBT will tend to underes-
timate the actual weight of evidence provided by an experiment in favor of a true
alternative hypothesis.

Like classical statistical hypothesis tests, the tangible consequence of a Bayesian
hypothesis test is often the rejection of one hypothesis, say H0, in favor of the sec-
ond, say H1. In a Bayesian test, the null hypothesis is rejected if the posterior
probability of H1 exceeds a certain threshold. Given the prior odds between the
hypotheses, this is equivalent to determining a threshold, say γ , over which the
Bayes factor between H1 and H0 must fall in order to reject H0 in favor of H1.
It is therefore of some practical interest to determine alternative hypotheses that
maximize the probability that the Bayes factor from a test exceeds a specified
threshold.
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With this motivation and notation in place, a UMPBT(γ ) may be formally de-
fined as follows.

DEFINITION. A uniformly most powerful Bayesian test for evidence thresh-
old γ > 0 in favor of the alternative hypothesis H1 against a fixed null hypothe-
sis H0, denoted by UMPBT(γ ), is a Bayesian hypothesis test in which the Bayes
factor for the test satisfies the following inequality for any θ t ∈ � and for all alter-
native hypotheses H2 : θ ∼ π2(θ):

Pθ t

[
BF10(x) > γ

] ≥ Pθ t

[
BF20(x) > γ

]
.(5)

In other words, the UMPBT(γ ) is a Bayesian test for which the alternative
hypothesis is specified so as to maximize the probability that the Bayes factor
BF10(x) exceeds the evidence threshold γ for all possible values of the data gen-
erating parameter θ t .

The remainder of this article is organized as follows. In the next section,
UMPBTs are described for one-parameter exponential family models. As in the
case of UMPTs, a general prescription for constructing UMPBTs is available only
within this class of densities. Specific techniques for defining UMPBTs or approx-
imate UMPBTs outside of this class are described later in Sections 4 and 5. In
applying UMPBTs to one parameter exponential family models, an approximate
equivalence between type I errors for UMPTs and the Bayes factors obtained from
UMPBTs is exposed.

In Section 3, UMPBTs are applied in two canonical testing situations: the test of
a binomial proportion, and the test of a normal mean. These two tests are perhaps
the most common tests used by practitioners of statistics. The binomial test is illus-
trated in the context of a clinical trial, while the normal mean test is applied to eval-
uate evidence reported in support of the Higgs boson. Section 4 describes several
settings outside of one parameter exponential family models for which UMPBTs
exist. These include cases in which the nuisance parameters under the null and
alternative hypothesis can be considered to be equal (though unknown), and sit-
uations in which it is possible to marginalize over nuisance parameters to obtain
expressions for data densities that are similar to those obtained in one-parameter
exponential family models. Section 5 describes approximations to UMPBTs ob-
tained by specifying alternative hypotheses that depend on data through statistics
that are ancillary to the parameter of interest. Concluding comments appear in
Section 6.

2. One-parameter exponential family models. Assume that {x1, . . . , xn} ≡
x are i.i.d. with a sampling density (or probability mass function in the case of
discrete data) of the form

f (x | θ) = h(x) exp
[
η(θ)T (x) − A(θ)

]
,(6)
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where T (x), h(x), η(θ) and A(θ) are known functions, and η(θ) is monotonic.
Consider a one-sided test of a point null hypothesis H0 : θ = θ0 against an arbitrary
alternative hypothesis. Let γ denote the evidence threshold for a UMPBT(γ ), and
assume that the value of θ0 is fixed.

LEMMA 1. Assume the conditions of the previous paragraph pertain, and de-
fine gγ (θ, θ0) according to

gγ (θ, θ0) = log(γ ) + n[A(θ) − A(θ0)]
η(θ) − η(θ0)

.(7)

In addition, define u to be 1 or −1 according to whether η(θ) is monotonically in-
creasing or decreasing, respectively, and define v to be either 1 or −1 according to
whether the alternative hypothesis requires θ to be greater than or less than θ0, re-
spectively. Then a UMPBT(γ ) can be obtained by restricting the support of π1(θ)

to values of θ that belong to the set

arg min
θ

uvgγ (θ, θ0).(8)

PROOF. Consider the case in which the alternative hypothesis requires θ to be
greater than θ0 and η(θ) is increasing (so that uv = 1), and let θt denote the true
(i.e., data-generating) parameter for x under (6). Consider first simple alternatives
for which the prior on θ is a point mass at θ1. Then

Pθt (BF10 > γ ) = Pθt

[
log(BF10) > log(γ )

]
(9)

= Pθt

{
n∑

i=1

T (xi) >
log(γ ) + n[A(θ1) − A(θ0)]

η(θ1) − η(θ0)

}
.

It follows that the probability in (9) achieves its maximum value when the right-
hand side of the inequality is minimized, regardless of the distribution of

∑
T (xi).

Now consider composite alternative hypotheses, and define an indicator func-
tion s according to

s(x, θ) = Ind

(
exp

{[
η(θ) − η(θ0)

] n∑
i=1

T (xi) − n
[
A(θ) − A(θ0)

]}
> γ

)
.(10)

Let θ∗ be a value that minimizes gγ (θ, θ0). Then it follows from (9) that

s(x, θ) ≤ s
(
x, θ∗)

for all x.(11)

This implies that ∫
�

s(x, θ)π(θ) dθ ≤ s
(
x, θ∗)

(12)
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for all probability densities π(θ). It follows that

Pθt (BF10 > γ ) =
∫

X
s(x, θ)f (x | θt ) dx(13)

is maximized by a prior that concentrates its mass on the set for which gγ (θ, θ0) is
minimized.

The proof for other values of (u, v) follows by noting that the direction of the
inequality in (9) changes according to the sign of η(θ1) − η(θ0). �

It should be noted that in some cases the values of θ that maximize Pθt (BF10 >

γ ) are not unique. This might happen if, for instance, no value of the sufficient
statistic obtained from the experiment could produce a Bayes factor that exceeded
the γ threshold. For example, it would not be possible to obtain a Bayes factor of
10 against a null hypothesis that a binomial success probability was 0.5 based on a
sample of size n = 1. In that case, the probability of exceeding the threshold is 0 for
all values of the success probability, and a unique UMPBT does not exist. More
generally, if T (x) is discrete, then many values of θ1 might produce equivalent
tests. An illustration of this phenomenon is provided in the first example.

2.1. Large sample properties of UMPBTs. Asymptotic properties of UMPBTs
can most easily be examined for tests of point null hypotheses for a canonical
parameter in one-parameter exponential families. Two properties of UMPBTs in
this setting are described in the following lemma.

LEMMA 2. Let X1, . . . ,Xn represent a random sample drawn from a den-
sity expressible in the form (6) with η(θ) = θ , and consider a test of the precise
null hypothesis H0 : θ = θ0. Suppose that A(θ) has three bounded derivatives in a
neighborhood of θ0, and let θ∗ denote a value of θ that defines a UMPBT(γ ) test
and satisfies

dgγ (θ∗, θ0)

dθ
= 0.(14)

Then the following statements apply:

(1) For some t ∈ (θ0, θ
∗),

∣∣θ∗ − θ0
∣∣ =

√
2 log(γ )

nA′′(t)
.(15)

(2) Under the null hypothesis,

log(BF10) → N
(− log(γ ),2 log(γ )

)
as n → ∞.(16)
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PROOF. The first statement follows immediately from (14) by expanding A(θ)

in a Taylor series around θ∗. The second statement follows by noting that the
weight of evidence can be expressed as

log(BF10) = (
θ∗ − θ0

) n∑
i=1

T (xi) − n
[
A

(
θ∗) − A(θ0)

]
.

Expanding in a Taylor series around θ0 leads to

log(BF10) =
√

2 log(γ )

nA′′(t)

[
n∑

i=1

T (xi) − nA′(θ0) − n

2
A′′(θ0)

√
2 log(γ )

nA′′(t)

]
+ ε,(17)

where ε represents a term of order O(n−1/2). From properties of exponential fam-
ily models, it is known that

Eθ0

[
T (xi)

] = A′(θ0) and Varθ0

(
T (xi)

) = A′′(θ0).

Because A(θ) has three bounded derivatives in a neighborhood of θ0, [A′(t) −
A′(θ0)] and [A′′(t) − A′′(θ0)] are order O(n−1/2), and the statement follows by
application of the central limit theorem. �

Equation (15) shows that the difference |θ∗ −θ0| is O(n−1/2) when the evidence
threshold γ is held constant as a function of n. In classical terms, this implies
that alternative hypotheses defined by UMPBTs represent Pitman sequences of
local alternatives [Pitman (1949)]. This fact, in conjunction with (16), exposes
an interesting behavior of UMPBTs in large sample settings, particularly when
viewed from the context of the Jeffreys–Lindley paradox [Jeffreys (1939), Lindley
(1957); see also Robert, Chopin and Rousseau (2009)].

The Jeffreys–Lindley paradox (JLP) arises as an incongruity between Bayesian
and classical hypothesis tests of a point null hypothesis. To understand the para-
dox, suppose that the prior distribution for a parameter of interest under the alter-
native hypothesis is uniform on an interval I containing the null value θ0, and that
the prior probability assigned to the null hypothesis is π1. If π1 is bounded away
from 0, then it is possible for the null hypothesis to be rejected in an α-level sig-
nificance test even when the posterior probability assigned to the null hypothesis
exceeds 1 − α. Thus, the anomalous behavior exhibited in the example of Table 1,
in which the null hypothesis was rejected in a significance test while being sup-
ported by the data, is characteristic of a more general phenomenon that may occur
even in large sample settings. To see that the null hypothesis can be rejected even
when the posterior odds are in its favor, note that for sufficiently large n the width
of I will be large relative to the posterior standard deviation of θ under the alterna-
tive hypothesis. Data that are not “too far” from fθ0 may therefore be much more
likely to have arisen from the null hypothesis than from a density fθ when θ is
drawn uniformly from I . At the same time, the value of the test statistic based on
the data may appear extreme given that fθ0 pertains.



1726 V. E. JOHNSON

For moderate values of γ , the second statement in Lemma 2 shows that the
weight of evidence obtained from a UMPBT is unlikely to provide strong evi-
dence in favor of either hypothesis when the null hypothesis is true. When γ = 4,
for instance, an approximate 95% confidence interval for the weight of evidence
extends only between (−4.65,1.88), no matter how large n is. Thus, the posterior
probability of the null hypothesis does not converge to 1 as the sample size grows.
The null hypothesis is never fully accepted—nor the alternative rejected—when
the evidence threshold is held constant as n increases.

This large sample behavior of UMPBTs with fixed evidence thresholds is, in a
certain sense, similar to the JLP. When the null hypothesis is true and n is large, the
probability of rejecting the null hypothesis at a fixed level of significance remains
constant at the specified level of significance. For instance, the null hypothesis is
rejected 5% of the time in a standard 5% significance test when the null hypothesis
is true, regardless of how large the sample size is. Similarly, when γ = 4, the
probability that the weight of evidence in favor of the alternative hypothesis will
be greater than 0 converges to 0.20 as n becomes large. Like the significance test,
there remains a nonzero probability that the alternative hypothesis will be favored
by the UMPBT even when the null hypothesis is true, regardless of how large n is.

On a related note, Rousseau (2007) has demonstrated that a point null hypothe-
sis may be used as a convenient mathematical approximation to interval hypothe-
ses of the form (θ0 − ε, θ0 + ε) if ε is sufficiently small. Her results suggest that
such an approximation is valid only if ε < o(n). The fact that UMPBT alternatives
decrease at a rate of O(n−1/2) suggests that UMPBTs may be used to test small
interval hypotheses around θ0, provided that the width of the interval satisfies the
constraints provided by Rousseau.

Further comments regarding the asymptotic properties of UMPBTs appear in
the discussion section.

3. Examples. Tests of simple hypotheses in one-parameter exponential fam-
ily models continue to be the most common statistical hypothesis tests used by
practitioners. These tests play a central role in many science, technology and busi-
ness applications. In addition, the distributions of many test statistics are asymp-
totically distributed as standard normal deviates, which means that UMPBTs can
be applied to obtain Bayes factors based on test statistics [Johnson (2005)]. This
section illustrates the use of UMPBT tests in two archetypical examples; the first
involves the test of a binomial success probability, and the second the test of the
value of a parameter estimate that is assumed to be approximately normally dis-
tributed.

3.1. Test of binomial success probability. Suppose x ∼ Bin(n,p), and con-
sider the test of a null hypothesis H0 :p = p0 versus an alternative hypothesis
H1 :p > p0. Assume that an evidence threshold of γ is desired for the test; that is,
the alternative hypothesis is accepted if BF10 > γ .



UNIFORMLY MOST POWERFUL BAYESIAN TESTS 1727

From Lemma 1, the UMPBT(γ ) is defined by finding p1 that satisfies p1 > p0
and

p1 = arg min
p

log(γ ) − n[log(1 − p) − log(1 − p0)]
log[p/(1 − p)] − log[p0/(1 − p0)] .(18)

Although this equation cannot be solved in closed form, its solution can be found
easily using optimization functions available in most statistical programs.

3.1.1. Phase II clinical trials with binary outcomes. To illustrate the resulting
test in a real-world application that involves small sample sizes, consider a one-
arm Phase II trial of a new drug intended to improve the response rate to a disease
from the standard-of-care rate of p0 = 0.3. Suppose also that budget and time
constraints limit the number of patients that can be accrued in the trial to n = 10,
and suppose that the new drug will be pursued only if the odds that it offers an
improvement over the standard of care are at least 3:1. Taking γ = 3, it follows
from (18) that the UMPBT alternative is defined by taking H1 :p1 = 0.525. At this
value of p1, the Bayes factor BF10 in favor of H1 exceeds 3 whenever 6 or more
of the 10 patients enrolled in the trial respond to treatment.

A plot of the probability that BF10 exceeds 3 as function of the true response
rate p appears in Figure 1. For comparison, also plotted in this figure (dashed

FIG. 1. Probability that the Bayes factor exceeds 3 plotted against the data-generating parameter.
The solid curve shows the probability of exceeding 3 for the UMPBT. The dashed curve displays this
probability when the Bayes factor is calculated using the data-generating parameter.
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curve) is the probability that BF10 exceeds 3 when p1 is set to the data-generating
parameter, that is, when p1 = pt .

Figure 1 shows that the probability that BF10 exceeds 3 when calculated under
the true alternative hypothesis is significantly smaller than it is under the UMPBT
alternative for values of p < 0.4 and for values of p > 0.78. Indeed, for values
of p < 0.334, there is no chance that BF10 will exceed 3. This is so because
(0.334/0.30)x remains less than 3.0 for all x ≤ 10. The decrease in the probability
that the Bayes factor exceeds 3 for large values of p stems from the relatively small
probability that these models assign to the observation of intermediate values of x.
For example, when p = 0.8, the probability of observing 6 out 10 successes is only
0.088, while the corresponding probability under H0 is 0.037. Thus BF10 = 2.39,
and the evidence in favor of the true success probability does not exceed 3. That is,
the discontinuity in the dashed curve at p ≈ 0.7 occurs because the Bayes factor
for this test is not greater than 3 when x = 6. Similarly, the other discontinuities in
the dashed curve occur when the rejection region for the Bayesian test (i.e., values
of x for which the Bayes factor is greater than 3) excludes another immediate value
of x. The dashed and solid curves agree for all Bayesian tests that produce Bayes
factors that exceed 3 for all values of x ≥ 6.

It is also interesting to note that the solid curve depicted in Figure 1 represents
the power curve for an approximate 5% one-sided significance test of the null hy-
pothesis that p = 0.3 [note that P0.3(X ≥ 6) = 0.047]. This rejection region for
the 5% significance test also corresponds to the region for which the Bayes factor
corresponding to the UMPBT(γ ) exceeds γ for all values of γ ∈ (2.36,6.82). If
equal prior probabilities are assigned to H0 and H1, this suggests that a p-value
of 0.05 for this test corresponds roughly to the assignment of a posterior probabil-
ity between (1.0/7.82,1.0/3.36) = (0.13,0.30) to the null hypothesis. This range
of values for the posterior probability of the null hypothesis is in approximate
agreement with values suggested by other authors, for example, Berger and Sellke
(1987).

This example also indicates that a UMPBT can result in large type I errors if the
threshold γ is chosen to be too small. For instance, taking γ = 2 in this example
would lead to type I errors that were larger than 0.05.

It is important to note that the UMPBT does not provide a test that maximizes
the expected weight of evidence, as equation (4) demonstrates. This point is il-
lustrated in Figure 2, which depicts the expected weight of evidence obtained in
favor of H1 by a solid curve as the data-generating success probability is varied
in (0.3,1.0). For comparison, the dashed curve shows the expected weight of ev-
idence obtained as a function of the true parameter value. As predicted by the
inequality in (4), on average the UMPBT provides less evidence in favor of the
true alternative hypothesis for all values of p ∈ (0.3,1.0) except p = 0.525, the
UMPBT value.
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FIG. 2. Expected weight of evidence produced by a UMPBT(γ ) against a null hypothesis that
p0 = 0.3 when the sample size is n = 10 (solid curve), versus the expected weight of evidence ob-
served using the data-generating success probability at the alternative hypothesis (dashed curve).
The data-generating parameter value is displayed on the horizontal axis.

3.2. Test of normal mean, σ 2 known. Suppose xi , i = 1, . . . , n are i.i.d.
N(μ,σ 2) with σ 2 known. The null hypothesis is H0 :μ = μ0, and the alterna-
tive hypothesis is accepted if BF10 > γ . Assuming that the alternative hypothesis
takes the form H1 :μ = μ1 in a one-sided test, it follows that

log(BF10) = n

σ 2

[
x̄(μ1 − μ0) + 1

2

(
μ2

0 − μ2
1
)]

.(19)

If the data-generating parameter is μt , the probability that BF10 is greater than γ

can be written as

Pμt

[
(μ1 − μ0)x̄ >

σ 2 log(γ )

n
− 1

2

(
μ2

0 − μ2
1
)]

.(20)

If μ1 > μ0, then the UMPBT(γ ) value of μ1 satisfies

arg min
μ1

σ 2 log(γ )

n(μ1 − μ0)
+ 1

2
(μ0 + μ1).(21)

Conversely, if μ1 < μ0, then optimal value of μ1 satisfies

arg min
μ1

σ 2 log(γ )

n(μ1 − μ0)
+ 1

2
(μ0 + μ1).(22)
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FIG. 3. Probability that Bayes factor in favor of UMPBT alternative exceeds 10 when μ0 = 0 and
n = 1 (solid curve). The dashed curve displays this probability when the Bayes factor is calculated
under the alternative hypothesis that μ1 equals the data-generating parameter (displayed on the
horizontal axis).

It follows that the UMPBT(γ ) value for μ1 is given by

μ1 = μ0 ± σ

√
2 logγ

n
,(23)

depending on whether μ1 > μ0 or μ1 < μ0.
Figure 3 depicts the probability that the Bayes factor exceeds γ = 10 when

testing a null hypothesis that μ = 0 based on a single, standard normal observation
(i.e., n = 1, σ 2 = 1). In this case, the UMPBT(10) is obtained by taking μ1 =
2.146. For comparison, the probability that the Bayes factor exceeds 10 when the
alternative is defined to be the data-generating parameter is depicted by the dashed
curve in the plot.

UMPBTs can also be used to interpret the evidence obtained from classical
UMPTs. In a classical one-sided test of a normal mean with known variance, the
null hypothesis is rejected if

x̄ > μ0 + zα

σ√
n
,



UNIFORMLY MOST POWERFUL BAYESIAN TESTS 1731

where α is the level of the test designed to detect μ1 > μ0. In the UMPBT, from
(19)–(20) it follows that the null hypothesis is rejected if

x̄ >
σ 2 log(γ )

n(μ1 − μ0)
+ 1

2
(μ1 + μ0).

Setting μ1 = μ0 +σ
√

2 log(γ )/n and equating the two rejection regions, it follows
that the rejection regions for the two tests are identical if

γ = exp
(

z2
α

2

)
.(24)

For the case of normally distributed data, it follows that

μ1 = μ0 + σ√
n
zα,(25)

which means that the alternative hypothesis places μ1 at the boundary of the
UMPT rejection region.

The close connection between the UMPBT and UMPT for a normal mean
makes it relatively straightforward to examine the relationship between the p-
values reported from a classical test and either the Bayes factors or posterior prob-
abilities obtained from a Bayesian test. For example, significance tests for normal
means are often conducted at the 5% level. Given this threshold of evidence for re-
jection of the null hypothesis, the one-sided γ threshold corresponding to the 5%
significance test is 3.87, and the UMPBT alternative is μ1 = μ0 + 1.645σ/

√
n. If

we assume that equal prior probabilities are assigned to the null and alternative hy-
potheses, then a correspondence between p-values and posterior probabilities as-
signed to the null hypothesis is easy to establish. This correspondence is depicted
in Figure 4. For instance, this figure shows that a p-value of 0.01 corresponds to
the assignment of posterior probability 0.08 to the null hypothesis.

3.2.1. Evaluating evidence for the Higgs boson. On July 4, 2012, scientists at
CERN made the following announcement:

We observe in our data clear signs of a new particle, at the level of 5 sigma, in
the mass region around 126 gigaelectronvolts (GeV). (http://press.web.cern.ch/press/
PressReleases/Releases2012/PR17.12E.html).

In very simplified terms, the 5 sigma claim can be explained by fitting a model for
a Poisson mean that had the following approximate form:

μ(x) = exp
(
a0 + a1x + a2x

2) + sφ(x;m,w).

Here, x denotes mass in GeV, {ai} denote nuisance parameters that model back-
ground events, s denotes signal above background, m denotes the mass of a new
particle, w denotes a convolution parameter and φ(x;m,w) denotes a Gaussian
density centered on m with standard deviation w [Prosper (2012)]. Poisson events

http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.html
http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.html
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FIG. 4. Correspondence between p-values and posterior model probabilities for a UMPBT test
derived from a 5% test. This plot assumes equal prior probabilities were assigned to the null and
alternative hypotheses. Note that both axes are displayed on the logarithmic scale.

collected from a series of high energy experiments conducted in the Large Hadron
Collider (LHC) at CERN provide the data to estimate the parameters in this styl-
ized model. The background parameters {ai} are considered nuisance parameters.
Interest, of course, focuses on testing whether s > 0 at a mass location m. The null
hypothesis is that s = 0 for all m.

The accepted criterion for declaring the discovery of a new particle in the field
of particle physics is the 5 sigma rule, which in this case requires that the estimate
of s be 5 standard errors from 0 (http://public.web.cern.ch/public/).

Calculation of a Bayes factor based on the original mass spectrum data is com-
plicated by the fact that prior distributions for the nuisance parameters {ai}, m,
and w are either not available or are not agreed upon. For this reason, it is more
straightforward to compute a Bayes factor for these data based on the test statistic
z = ŝ/ se(ŝ) where ŝ denotes the maximum likelihood estimate of s and se(ŝ) its
standard error [Johnson (2005, 2008)]. To perform this test, assume that under the
null hypothesis z has a standard normal distribution, and that under the alternative
hypothesis z has a normal distribution with mean μ and variance 1.

In this context, the 5 sigma rule for declaring a new particle discovery means
that a new discovery can only be declared if the test statistic z > 5. Using equation
(24) to match the rejection region of the classical significance test to a UMPBT(γ )

http://public.web.cern.ch/public/
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implies that the corresponding evidence threshold is γ = exp(12.5) ≈ 27,000. In
other words, a Bayes factor of approximately γ = exp(12.5) ≈ 27,000 corresponds
to the 5 sigma rule required to accept the alternative hypothesis that a new particle
has been found.

It follows from the discussion following equation (25) that the alternative hy-
pothesis for the UMPBT alternative is μ1 = 5. This value is calculated under the
assumption that the test statistic z has a standard normal distribution under the
null hypothesis [i.e., σ = 1 and n = 1 in (23)]. If the observed value of z was
exactly 5, then the Bayes factor in favor of a new particle would be approxi-
mately 27,000. If the observed value was, say 5.1, then the Bayes factor would
be exp(−0.5[0.12 − 5.12]) = 44,000. These values suggest very strong evidence
in favor of a new particle, but perhaps not as much evidence as might be inferred
by nonstatisticians by the report of a p-value of 3 × 10−7.

There are, of course, a number of important caveats that should be considered
when interpreting the outcome of this analysis. This analysis assumes that an ex-
periment with a fixed endpoint was conducted, and that the UMPBT value of the
Poisson rate at 126 GeV was of physical significance. Referring to (23) and not-
ing that the asymptotic standard error of z decreases at rate

√
n, it follows that

the UMPBT alternative hypothesis favored by this analysis is O(n−1/2). For suf-
ficiently large n, systematic errors in the estimation of the background rate could
eventually lead to the rejection of the null hypothesis in favor of the hypothesis of
a new particle. This is of particular concern if the high energy experiments were
continued until a 5 sigma result was obtained. Further comments regarding this
point appear in the discussion section.

3.3. Other one-parameter exponential family models. Table 2 provides the
functions that must be minimized to obtain UMPBTs for a number of common
exponential family models. The objective functions listed in this table correspond
to the function gγ (·, ·) specified in Lemma 1 with v = 1. The negative binomial is
parameterized by the fixed number of failures r and random number of successes

TABLE 2
Common one parameter exponential family models for which UMPBT(γ ) exist

Model Test Objective function

Binomial p1 > p0 {log(γ ) − n log[(1 − p)/(1 − p0)]}(log{[p(1 − p0)]/[(1 − p)p0]})−1

Exponential μ1 > μ0 {log(γ ) + n[log(μ1) − log(μ0)]}[1/μ0 − 1/μ1]−1

Neg. Bin. p1 > p0 {log(γ ) − r log[(1 − p1)/(1 − p0)]}[log(p1) − log(p0)]−1

Normal σ 2
1 > σ 2

0 {2σ 2
1 σ 2

0 (log(γ ) + n
2 [log(σ 2

1 ) − log(σ 2
0 )])}[σ 2

1 − σ 2
0 ]−1

Normal μ1 > μ0 [σ 2 log(γ )](μ1 − μ0)−1 + 1
2 (μ0 + μ1)

Poisson μ1 > μ0 [log(γ ) + n(μ1 − μ0)][log(μ1) − log(μ0)]−1
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x = 0,1, . . . observed before termination of sampling. The other models are pa-
rameterized so that μ and p denote means and proportions, respectively, while σ 2

values refer to variances.

4. Extensions to other models. Like UMPTs, UMPBTs are most easily de-
fined within one-parameter exponential family models. In unusual cases, UMPBTs
can be defined for data modeled by vector-valued exponential family models, but
in general such extensions appear to require stringent constraints on nuisance pa-
rameters.

One special case in which UMPBTs can be defined for a d-dimensional param-
eter θ occurs when the density of an observation can be expressed as

f (x | θ) = h(x) exp

[
d∑

i=1

ηi(θ)Ti(x) − A(θ)

]
,(26)

and all but one of the ηi(θ) are constrained to have identical values under both hy-
potheses. To understand how a UMPBT can be defined in this case, without loss of
generality suppose that ηi(θ), i = 2, . . . , d are constrained to have the same value
under both the null and alternative hypotheses, and that the null and alternative hy-
potheses are defined by H0 : θ1 = θ1,0 and H1 : θ1 > θ1,0. For simplicity, suppose
further that η1 is a monotonically increasing function.

As in Lemma 1, consider first simple alternative hypotheses expressible as
H1 : θ1 = θ1,1. Let θ0 = (θ1,0, . . . , θd,0)

′ and θ1 = (θ1,1, . . . , θd,1)
′. It follows that

the probability that the logarithm of the Bayes factor exceeds a threshold log(γ )

can be expressed as

P
[
log(BF10) > log(γ )

]
= P

{[
η1(θ1,1) − η1(θ1,0)

]
T1(x) − [

A(θ1) − A(θ0)
]
> log(γ )

}
(27)

= P
[
T1(x) >

log(γ ) + [A(θ1) − A(θ0)]
[η1(θ1,1) − η1(θ1,0)]

]
.

The probability in (27) is maximized by minimizing the right-hand side of the
inequality. The extension to composite alternative hypotheses follows the logic
described in inequalities (11)–(13), which shows that UMPBT(γ ) tests can be ob-
tained in this setting by choosing the prior distribution of θ1 under the alternative
hypotheses so that it concentrates its mass on the set

arg min
θ

log(γ ) + [A(θ1) − A(θ0)]
[η1(θ1,1) − η1(θ1,0)] ,(28)

while maintaining the constraint that the values of ηi(θ) are equal under both hy-
potheses. Similar constructions apply if η1 is monotonically decreasing, or if the
alternative hypothesis specifies that θ1,0 < θ0,0.

More practically useful extensions of UMPBTs can be obtained when it is pos-
sible to integrate out nuisance parameters in order to obtain a marginal density
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for the parameter of interest that falls within the class of exponential family of
models. An important example of this type occurs in testing whether a regression
coefficient in a linear model is zero.

4.1. Test of linear regression coefficient, σ 2 known. Suppose that

y ∼ N
(
Xβ, σ 2In

)
,(29)

where σ 2 is known, y is an n × 1 observation vector, X an n × p design matrix of
full column rank and β = (β1, . . . , βp)′ denotes a p × 1 regression parameter. The
null hypothesis is defined as H0 :βp = 0. For concreteness, suppose that interest
focuses on testing whether βp > 0, and that under both the null and alternative
hypotheses, the prior density on the first p − 1 components of β is a multivari-
ate normal distribution with mean vector 0 and covariance matrix σ 2�. Then the
marginal density of y under H0 is

m0(y) = (
2πσ 2)−n/2|�|−1/2|F|−1/2 exp

(
− R

2σ 2

)
,(30)

where

F = X′−pX−p + �−1, H = X−pF−1X′−p, R = y′(In − H)′y,(31)

and X−p is the matrix consisting of the first p − 1 columns of X.
Let βp∗ denote the value of βp under the alternative hypothesis H1 that defines

the UMPBT(γ ), and let xp denote the pth column of X. Then the marginal density
of y under H1 is

m1(y) = m0(y) × exp
{
− 1

2σ 2

[
βp∗2x′

p(In − H)xp − 2βp∗x′
p(In − H)y

]}
.(32)

It follows that the probability that the Bayes factor BF10 exceeds γ can be ex-
pressed as

P
[
x′
p(In − H)y >

σ 2 log(γ )

βp∗
+ 1

2
βp∗x′

p(In − H)xp

]
,(33)

which is maximized by minimizing the right-hand side of the inequality. The
UMPBT(γ ) is thus obtained by taking

βp∗ =
√√√√ 2σ 2 log(γ )

x′
p(In − H)xp

.(34)

The corresponding one-sided test of βp < 0 is obtained by reversing the sign of
βp∗ in (34).

Because this expression for the UMPBT assumes that σ 2 is known, it is not of
great practical significance by itself. However, this result may guide the specifica-
tion of alternative models in, for example, model selection algorithms in which the
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priors on regression coefficients are specified conditionally on the value of σ 2. For
example, the mode of the nonlocal priors described in Johnson and Rossell (2012)
might be set to the UMPBT values after determining an appropriate value of γ

based on both the sample size n and number of potential covariates p.

5. Approximations to UMPBTs using data-dependent alternatives. In
some situations—most notably in linear models with unknown variances—data
dependent alternative hypotheses can be defined to obtain tests that are approxi-
mately uniformly most powerful in maximizing the probability that a Bayes factor
exceeds a threshold. This strategy is only attractive when the statistics used to de-
fine the alternative hypothesis are ancillary to the parameter of interest.

5.1. Test of normal mean, σ 2 unknown. Suppose that xi , i = 1, . . . , n, are i.i.d.
N(μ,σ 2), that σ 2 is unknown and that the null hypothesis is H0 :μ = μ0. For con-
venience, assume further that the prior distribution on σ 2 is an inverse gamma dis-
tribution with parameters α and λ under both the null and alternative hypotheses.

To obtain an approximate UMPBT(γ ), first marginalize over σ 2 in both mod-
els. Noting that (1 + a/t)t → ea , it follows that the Bayes factor in favor of the
alternative hypothesis satisfies

BF10(x) =
[∑n

i=1(xi − μ0)
2 + 2λ∑n

i=1(xi − μ1)2 + 2λ

]n/2+α

(35)

≈
[

1 + (x̄ − μ0)
2/s2

1 + (x̄ − μ1)2/s2

]n/2+α

(36)

≈ exp
{
− n

2s2

[
(x̄ − μ1)

2 − (x̄ − μ0)
2]}

,(37)

where

s2 =
∑n

i=1(xi − x̄)2 + 2λ

n + 2α
.(38)

The expression for the Bayes factor in (37) reduces to (19) if σ 2 is replaced by s2.
This implies that an approximate, but data-dependent UMPBT alternative hypoth-
esis can be specified by taking

μ1 = μ0 ± s

√
2 logγ

n
,(39)

depending on whether μ1 > μ0 or μ1 < μ0.
Figure 5 depicts the probability that the Bayes factor exceeds γ = 10 when

testing a null hypothesis that μ = 0 based on an independent sample of size n = 30
normal observations with unit variance (σ 2 = 1) and using (39) to set the value
of μ1 under the alternative hypothesis. For comparison, the probability that the
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FIG. 5. Probability that Bayes factor based on data-dependent, approximate UMPBT alternative
exceeds 10 when μ0 = 0 and n = 30 (solid curve). The dashed curve displays this probability when
the Bayes factor is calculated under the alternative hypothesis that μ1 equals data-generating pa-
rameter (displayed on the horizontal axis) and σ 2 = 1 (the true value).

Bayes factor exceeds 10 when the alternative is defined by taking σ 2 = 1 and
μ1 to be the data-generating parameter is depicted by the dashed curve in the
plot. Interestingly, the data-dependent, approximate UMPBT(10) provides a higher
probability of producing a Bayes factor that exceeds 10 than do alternatives fixed
at the data generating parameters.

5.2. Test of linear regression coefficient, σ 2 unknown. As final example, sup-
pose that the sampling model of Section 4.1 holds, but assume now that the obser-
vational variance σ 2 is unknown and assumed under both hypotheses to be drawn
from an inverse gamma distribution with parameters α and λ. Also assume that the
prior distribution for the first p − 1 components of β , given σ 2, is a multivariate
normal distribution with mean 0 and covariance matrix σ 2. As before, assume
that H0 :βp = 0. Our goal is to determine a value βp∗ so that H1 :βp = βp∗ is the
UMPBT(γ ) under the constraint that βp > 0.

Define y1 = y − xpβp∗ and let y0 = y. By integrating with respect to the prior
densities on σ 2 and the first p − 1 components of β , the marginal density of the
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data under hypothesis i, i = 0,1 can be expressed as

mi(y) = 2απ−n/2||−1/2 λα

�(α)
�(n/2 + α)|F|−1/2R

−n/2−α
i ,(40)

where F is defined in (31), and

Ri = y′
i (In − H)yi + 2λ.(41)

It follows that the Bayes factor in favor of H1 can be written as

BF10 =
[
1 + βp∗2x′

p(In − H)xp − 2βp∗x′
p(In − H)y

R0

]−n/2−α

(42)

≈ exp
{
− 1

2s2
p

[
βp∗2x′

p(In − H)xp − 2βp∗x′
p(In − H)y

]}
,(43)

where

s2
p = R0

n + 2α
.(44)

The UMPBT(γ ) is defined from (43) according to

P(BF10 > γ ) = P
[
x′
p(In − H)y >

s2
p log(γ )

βp∗
+ 1

2
βp∗x′

p(In − H)xp

]
.(45)

Minimizing the right-hand side of the last inequality with respect to βp∗ results in

βp∗ =
√√√√ 2s2

p log(γ )

x′
p(In − H)xp

.(46)

This expression is consistent with the result obtained in the known variance
case, but with s2

p substituted for σ 2.

6. Discussion. The major contributions of this paper are the definition of
UMPBTs and the explicit description of UMPBTs for regular one-parameter expo-
nential family models. The existence of UMPBTs for exponential family models
is important because these tests represent the most common hypothesis tests con-
ducted by practitioners. The availability of UMPBTs for these models means that
these tests can be used to interpret test results in terms of Bayes factors and poste-
rior model probabilities in a wide range of scientific settings. The utility of these
tests is further enhanced by the connection between UMPBTs and UMPTs that
have the same rejection region. This connection makes it trivial to simultaneously
report both the p-value from a test and the corresponding Bayes factor.

The simultaneous report of default Bayes factors and p-values may play a piv-
otal role in dispelling the perception held by many scientists that a p-value of 0.05
corresponds to “significant” evidence against the null hypothesis. The preceding
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sections contain examples in which this level of significance favors the alternative
hypothesis by odds of only 3 or 4 to 1. Because few researchers would regard such
odds as strong evidence in favor of a new theory, the use of UMPBTs and the re-
port of Bayes factors based upon them may lead to more realistic interpretations
of evidence obtained from scientific studies.

The large sample properties of UMPBTs described in Section 2.1 deserve fur-
ther comment. From Lemma 2, it follows that the expected weight of evidence in
favor of a true null hypothesis in an exponential family model converges to log(γ )

as the sample size n tends to infinity. In other words, the evidence threshold γ

represents an approximate bound on the evidence that can be collected in favor of
the null hypothesis. This implies that γ must be increased with n in order to obtain
a consistent sequence of tests.

Several criteria might be used for selecting a value for γ in large sample set-
tings. One criterion can be inferred from the first statement of Lemma 2, where it
is shown that the difference between the tested parameter’s value under the null
and alternative hypotheses is proportional to [log(γ )/n]1/2. For this difference to
be a constant—as it would be in a subjective Bayesian test—log(γ ) must be pro-
portional to n, or γ = exp(cn) for some c > 0. This suggests that an appropriate
value for c might be determined by calibrating the weight of evidence against an
accepted threshold/sample size combination. For example, if an evidence thresh-
old of 4 were accepted as the standard threshold for tests conducted with a sample
size of 100, then c might be set to log(4)/100 = 0.0139. This value of c leads to an
evidence threshold of γ = 16 for sample sizes of 200, a threshold of 64 for sam-
ple sizes of 300, etc. From (24), the significance levels for corresponding z-tests
would be 5%, 1% and 0.2%, respectively.

The requirement to increase γ to achieve consistent tests in large samples
also provides insight into the performance of standard frequentist and subjective
Bayesian tests in large sample settings. The exponential growth rate of γ required
to maintain a fixed alternative hypothesis suggests that the weight of evidence
should be considered against the backdrop of sample size, even in Bayesian tests.
This is particularly important in goodness-of-fit testing where small deviations
from a model may be tolerable. In such settings, even moderately large Bayes fac-
tors against the null hypotheses may not be scientifically important when they are
based on very large sample sizes.

From a frequentist perspective, the use of UMPBTs in large sample settings can
provide insight into the deviations from null hypotheses when they are (inevitably)
detected. For instance, suppose that a one-sided 1% test has been conducted to
determine if the mean of normal data is 0, and that the test is rejected with a p-
value of 0.001 based on a sample size of 10,000. From (24), the implied evidence
threshold for the test is γ = 15, and the alternative hypothesis that has been im-
plicitly tested with the UMPBT is that μ = 0.023σ . Based on the observation of
x̄ = 0.031σ , the Bayes factor in favor of this alternative is 88.5. Although there
are strong odds against the null, the scientific importance of this outcome may be
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tempered by the fact that the alternative hypothesis that was supported against the
null represents a standardized effect size of only 2.3%.

This article has focused on the specification of UMPBTs for one-sided alterna-
tives. A simple extension of these tests to two-sided alternatives can be obtained
by assuming that the alternative hypothesis is represented by two equally-weighted
point masses located at the UMPBT values determined for one-sided tests. The
Bayes factors for such tests can be written as

P
[

0.5ml(x) + 0.5mh(x)

m0(x)
> γ

]
,(47)

where ml and mh denote marginal densities corresponding to one-sided UMPBTs.
Letting m∗(x) = max(ml(x),mh(x)) for the data actually observed, and assuming
that the favored marginal density dominates the other, it follows that

P
[

0.5ml(x) + 0.5mh(x)

m0(x)
> γ

]
≈ P

[
m∗(x)

m0(x)
> 2γ

]
.(48)

Thus, an approximate two-sided UMPBT(γ ) can be defined by specifying an
alternative hypothesis that equally concentrates its mass on the two one-sided
UMPBT(2γ ) tests.

Additional research is needed to identify classes of models and testing contexts
for which UMPBTs can be defined. The UMPBTs described in this article pri-
marily involve tests of point null hypotheses, or tests that can be reduced to a test
of a point null hypothesis after marginalizing over nuisance parameters. Whether
UMPBTs can be defined in more general settings remains an open question.
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