
STA 3000F (Fall, 2013)

Sketch of solutions for Homework 3

1. Profile log-likelihood. Suppose Y = (Y1, . . . , Yn) is a vector of independent,
identically distributed random variables from the density f(y;ψ, λ), where
ψ ∈ R is the parameter of interest and λ ∈ R is a nuisance parameter. The
profile log-likelihood is defined as `p(ψ) = `(ψ, λ̂ψ), where λ̂ψ is assumed to
satisfy the score equation ∂`(ψ, λ)/∂λ = 0.

(a) Show that the estimator of ψ that satisfies the profile score equation
∂`p(ψ)/∂ψ = 0 is the same as the maximum likelihood estimator of ψ.

It’s necessary to be a little bit careful with notation.

`′p(ψ) =
∂

∂ψ
`(ψ, λ̂ψ) +

∂

∂λ
`(ψ, λ̂ψ)λ̂ψ =

∂

∂ψ
`(ψ, λ̂ψ), (1)

by the assumption that λ̂ψ satisfies the score equation. Both `p(ψ) and λ̂ψ are
functions of y as well as ψ, but the dependence on y is suppressed, so `′p(ψ)

means differentiation with respect to ψ. Denote the solution of (1) by ψ̂p.
Then

∂

∂ψ
`(ψ̂p, λ̂ψ̂p

) = 0.

Also
∂

∂λ
`(ψ̂p, λ̂ψ̂p

) = 0,

because the score equation is defined for each value of ψ, including ψ̂p. The

maximum likelihood estimators ψ̂ and λ̂ of ψ and λ are the simultaneous
solution to

∂

∂ψ
`(ψ̂, λ̂) = 0,

∂

∂λ
`(ψ̂λ̂) = 0. (2)

We assume that this solution is unique and is the maximum likelihood esti-
mator, which implies (ψ̂p, λ̂ψ̂p

) = (ψ̂, λ̂).

I’m being very careful here, because many people lost marks for careless no-
tation, and mixing up derivatives of `p with derivatives of `(ψ, λ).

(b) Show that the profile information function jp(ψ) = −∂`p(ψ)/∂ψ∂ψT sat-
isfies

{jp(ψ)}−1 = jψψ(ψ, λ̂ψ),

where jψψ(θ) is the (ψ, ψ) block of j−1(θ), the inverse of the observed
Fisher information from the log-likelihood function `(ψ, λ).
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Most people got this part, more or less carefully. First apply the chain rule to
the derivative in (1), to get

jp(ψ) = jψψ(ψ, λ̂ψ) + jψλ(ψ, λ̂ψ)λ̂′ψ,

and then use the score equation defining λ̂ψ to show that λ̂′ψ = −jψλ(ψ, λ̂ψ)/jλλ(ψ, λ̂ψ).
These combine to give

jp(ψ) = jψψ(ψ, λ̂ψ)− jψλ(ψ, λ̂ψ)jλλ(ψ, λ̂ψ)−1jλψ(ψ, λ̂ψ).

Then use the formula for the inverse of a partitioned matrix to get the result.
In general terms, this formula is(

A B
C D

)−1

=

(
(A−BD−1C)−1 .

. .

)
.

The ShermanMorrisonWoodbury formula gives another expression for the el-
ement in the RHS:

(A−BD−1C)−1 = A−1 + A−1B(D − CA−1B)−1CA−1,

where if A is n×n, B is n×p, C is p×n and D is p×p, with p << n, this can
be useful if you already have A−1, and can express your matrix of interest as a
low rank adjustment to A. This seems to come up a lot in machine learning.

(c) Use Taylor series expansion to show that

λ̂ψ − λ̂ = −j−1
λλ (ψ̂, λ̂)jλψ(ψ̂, λ̂)(ψ − ψ̂) +Op(n

−1).

There are two equally good ways to solve this. One is to consider λ̂ψ as a

function of ψ, and expand it about ψ̂:

λ̂ψ = λ̂ψ̂ + (ψ − ψ̂) dλ̂ψ/dψ
∣∣∣
ψ̂

+R,

and note that in (a) and (b) we established λ̂ψ̂ = λ̂, and dλ̂ψ/dψ = −jψλ(ψ, λ̂ψ)/jλλ(ψ, λ̂ψ).

Then it just remains to show R = Op(n
−1). In this version R = (1/2)(ψ −

ψ̂)2 λ̂′′ψ

∣∣∣
ψ∗

, and work is needed to verify that λ̂′′ = Op(1); from work in class

we have (ψ − ψ̂)2 = Op(n
−1).

The other expansion is

0 =
∂

∂λ
`(ψ, λ̂ψ)

=
∂

∂λ
`(ψ̂, λ̂) + (ψ − ψ̂)

∂2

∂λ∂ψ
`(ψ̂, λ̂) + (λ̂ψ − λ̂)

∂2

∂λ2
`(ψ̂, λ̂) +R,
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where we have used again that λ̂ = λ̂ψ̂. Then we have

(λ̂ψ − λ̂)jλλ(θ̂) +R = (ψ̂ − ψ)jψλ(θ̂),

λ̂ψ − λ̂ = (ψ̂ − ψ)jψλ(θ̂)j
−1
λλ (θ̂){1 +Rj−1

λλ (θ̂)}−1

where I’m assuming both λ and ψ are scalars, but the expressions hold for
vectors as well. Now R will involve various third derivatives of `, multiplied
by either (ψ−ψ̂)2, (λ̂ψ−λ̂)2, or (ψ−ψ̂)(λ̂ψ−λ̂). Each of the 3rd derivatives will

be Op(n) by assumption, and ĵ−1
λλ is Op(n

−1). So we need (ψ− ψ̂)2, (λ̂ψ − λ̂)2,

and (ψ − ψ̂)(λ̂ψ − λ̂) to be Op(n
−1). This is true for ψ − ψ̂ by the asymptotic

normality result, so we only need λ̂ψ − λ̂ = Op(n
−1/2), which follows from the

leading term of the expression above, or, by showing that λ̂ψ = λ+Op(n
−1/2)

from the score equation with ψ fixed, and λ̂ = λ+Op(n
−1/2) from the pair of

score equations for the full maximum likelihood estimator.

(d) Expand `p(ψ) about ψ̂ and use the results of (b) and (c) to show that

wp(ψ) = 2{`p(ψ̂)− `p(ψ)} = (ψ − ψ̂)2jp(ψ̂) + op(1),

and hence that the limiting distribution of wp(ψ) is χ2
1, under the model.

It’s easy to get the first part from a Taylor series expansion in only ψ, modulo
showing that `′′′p (ψ̂) = op(1). This last step involves writing this 3rd deriva-
tive as a lengthy combination of 3rd derivatives of the original log-likelihood
function, multiplied by terms like (ψ − ψ̂)3, (ψ − ψ̂)2(λ̂ψ − λ̂), and so on, and
these are Op(n

−3/2). I was very unfussy about you checking the error term in
this part, if you had done it reasonably carefully in (c).

Many people did not finish by showing the limiting distribution to be χ2
1. It’s

not completely trivial, because (ψ̂−ψ)
.∼ N(0, jψψ(θ̂)), so (ψ̂−ψ)2{jψψ(θ̂)}−1 .∼

χ2
1; then use (b).

2. BNC, Exercise 3.6. Based on observations y1, . . . yn independently normally
distributed with unknown mean and variance, obtain the profile log-likelihood
for Pr(Y > a), where a is an arbitrary constant, and compare inference based
on this with the exact answer from the non-central t-distribution.

With thanks to Evgeny Levi, Zhenhua Lin and Victor Veitch. First ψ = Φ((a−
µ)/σ), so µ = σΦ−1(ψ)+a, and expressions are neater if we let δ = Φ−1(ψ) and
convert back at the end. Expressions are also simpler if we write xi = yi − a.
The log-likelihood function is then

`(δ, σ) = −n log σ − (1/2σ2)
∑

(xi − σδ)2

and
∂`(δ, σ)

∂σ
= −n

σ
+

1

σ3

∑
(xi − σδ)2 +

1

σ2

∑
(xi − σδ)δ,
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and setting this = 0 leads to a quadratic equation in σδ

−nσ2 + nsx − nδx̄σ = 0, where sx = Σx2
i /n, x̄ = Σxi/n

with solution

σ̂δ = −δx̄
2

+

√
sx +

δ2x̄2

4
.

We take the positive square root to ensure σ̂δ > 0. From this the Wald pivot
(δ − δ̂)j1/2

p (δ̂), or alternatively (ψ − ψ̂)j
1/2
p (ψ̂), can be computed numerically,

although these will not lead to the same confidence intervals. The invariant
pivot r = ±2{`p(δ̂)− `p(δ)} can be used if preferred.

It doesn’t seem possible to make further progress except numerically. Lower
bounds, or two-sided intervals, can be obtained from inverting r, or from
ψ̂ − zαj−1/2

p (ψ̂).

The bounds based on the non-central t distribution are given by Φ(T−1
n−1{(α, n−

1,
√
n((µ− a)/σ)/

√
n− 1}, where T−1

n−1(·) is the quantile function (qt) for the
non central T . However, I don’t see how to get this without knowing µ, σ.
So I think if the likelihood result is to be compared to this on the basis of
a simulated sample of size n, that rather than use the true values µ and σ
that generated the simulation, one should use the sample mean and sample
variance in the non centrality parameter.

This problem is one of a class of ‘non-standard’ normal theory problems. The
parameter ψ is the probability of an ‘extreme result’ (Y > a), and it is often
of interest to bound the confidence limit on such a probability. The parameter
δ is sometimes called a tolerance limit. Similar calculations arise in regression
calibration, where the parameter of interest is the value of x for which y = y∗,
some specified value, in a linear model with y = β0 + β1x, for example.

3. Adapted from BNC, Ex. 2.24.

(a) Suppose Y1, . . . , Yn are independent, identically distributed as Poisson
with mean θ. Show that the conditional distribution of Y1, . . . , Yn, given
S = ΣYi, is Multinomial(S, π) where π = (1/n, . . . , 1/n).

This distribution can in principle be used to assess goodness of fit of the
Poisson model, but if n is much bigger than 2 or 3 it will be difficult to
determine which directions in the sample space to examine.

(b) A summary statistic that could be used to see whether data are consistent
with the moment properties of the Poisson is T = Σ(Yi− Ȳ )2/{(n−1)Ȳ }.
Show that

E(T | S = s) = 1, var(T | S = s) =
2(1− 1/s)

n− 1
,

and thus that, conditionally on S = s, (n − 1)sT/(s − 1) has the same
first two moments as a χ2

(n−1)s/(s−1).
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This calculation was somewhat more brutal than I intended. Using the trino-
mial distribution for (Yi, Yj) gives a slightly easier form of the moment gener-
ating function. Even better is to note that the conditional distribution of Yi,
given Yj and S, is binomial, with suitably defined parameters. It is fine with
me if you use Wolfram alpha or Matlab or whatever for these calculations, but
you should state this clearly. A similar comment applies to Q4.

(c) Explore the extension of this to assessing goodness of fit for a Poisson
regression, where yi ∼ Po(θi), and log θi = α + βxi.

I didn’t mark this part, there doesn’t seem to be anything very nice. Because
it’s an exponential family y, given Σyi and Σyixi, is free of α and beta, but
it’s not clear what statistic to use to summarize this. In AS II, you may have
learned to use the deviance as a goodness-of-fit statistics, treating it as ap-
proximately χ2

n−1, and this is acceptable, but doesn’t involve any conditioning
as far as I know.

4. SM, Problem 4.9.1. The logistic density is a location-scale family with density
function

f(y;µ, σ) =
exp{(y − µ)/σ}

σ[1 + exp{(y − µ)/σ}]
, −∞ < y <∞,−∞ < µ <∞, σ > 0.

(a) When σ = 1, show that the expected Fisher information about µ in y is
1/3.

(b) If instead of observing y, we observe z = 1 if y > 0, otherwise z = 0.
When σ = 1 show that the maximum expected Fisher information about
µ in z is 1/4, achieved at µ = 0, so that the maximum relative efficiency
is 3/4.

The point of this (easy) question is to show the loss in information by di-
chotomizing – it is roughly equivalent to throwing away at least 1/4 of the
observations.

5. Saddlepoint approximation. Suppose X1, . . . , Xn are independent and iden-
tically distributed on R, with density function f(x) and moment generating
function MX(t) = E{exp(tX)} assumed to exist for t in an open interval about
0, and cumulant generating function KX(t) = logMX(t). The saddlepoint ap-
proximation to the density of X̄ = n−1ΣXi is given by

fX̄(x̄)
.
=

1√
2π

{
n

K ′′X(φ̂)

}1/2

exp{nKX(φ̂)− nφ̂x̄},

where φ̂ = φ̂(x̄) satisfies the equation K ′X(φ̂) = x̄.
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(a) Show that if Y1, . . . , Yn are independent and identically distributed from
a scalar parameter exponential family

f(y; θ) = exp{θy − c(θ)− d(y)}

that the saddlepoint approximation to the density of θ̂ is given by

fΘ̂(θ̂; θ)
.
=

1√
2π
j1/2(θ̂) exp{`(θ)− `(θ̂)}.

(b) If y1, . . . , yn are independent and identically distributed from a scalar
parameter location family

f(y; θ) = f0(y − θ),

then we showed in class that the exact density of the maximum likelihood
estimator θ̂, given a, where ai = yi − θ̂, i = 1, . . . , n, is

fΘ̂|A(θ̂ | a; θ) =
exp{`(θ; y)∫

exp{`(θ; y)}dθ
,

where in the right hand side we recall that yi = θ̂ + ai. By expanding
`(θ) in the denominator in a Taylor series about θ̂, show that the exact
conditional density can be approximated by

fΘ̂|A(θ̂ | a; θ)
.
=

1√
2π
j1/2(θ̂) exp{`(θ)− `(θ̂)}.

Both these approximations have similar versions for p-dimensional parametric
models, with slight changes in notation. Both approximations have relative
error O(n−1), and when re-normalized to integrate to 1 have relative error
O(n−3/2).

[Not everyone finished (a), by making the (1-1) transformation from ȳ to θ̂,
which moves the j(θ̂)1/2 from the denominator to the numerator.]

The O(n−1) error in the saddle point approximation comes from the sad-
dlepoint expansion, but expecting you to prove this would be unfair in the
extreme. You would need to know that

fX̄(x̄) =
1√
2π

{
n

K ′′X(φ̂)

}1/2

exp{nKX(φ̂)− nφ̂x̄}{1 +
d(φ̂)

n
+Op(

1

n2
)},

where d(φ̂) involves 3rd and 4th standardized derivatives of Kx(φ). In fact it
is

1

24

(
−{3K

′′′
X(φ̂)}2

K ′′X(φ̂)3/2
+

5K
(4)
X (φ̂)

K ′′X(φ̂)2

)
,
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(Reid, Statistical Science, 1988, p.213-227) This then gives

fΘ̂(θ̂; θ) =
1√
2π
j1/2(θ̂) exp{`(θ)− `(θ̂)}{1 +

d̃(θ̂)

n
+O(

1

n2
)}.

where d̃(θ̂) is a similar function of standardized 3rd and 4th derivatives of `(θ),
evaluated at θ̂. We could then write d̃(θ̂) = d̃(θ){1 + O(n

−1/2)}, and the d̃(θ)
term would be absorbed into the renormalizing constant giving

fΘ̂(θ̂; θ) = cj1/2(θ̂) exp{`(θ)− `(θ̂)}{1 +O(n
−3/2)}.

Don’t worry this will *NOT* be on the test. To get it rigorous involves even
more work, because this substitution only works for θ̂ in an O(n−1/2) neigh-
bourhood of θ, so we have to show that we can ignore the contribution from
outside this neighbourhood.

The error term in the Laplace approximation is easier. For example, expand
the integral in the denominator to fourth order, to get

`(θ)
.
= `(θ̂) +

1

2
(θ − θ̂)2`′′(θ̂) +

1

6
(θ − θ̂)3`′′′(θ̂) +

1

24
(θ − θ̂)4`(4)(θ̂);

now when we integrate exp `(θ) with respect to θ we have:∫
exp[

1

2
(θ − θ̂)2`′′(θ̂){1 +

1

3
(θ − θ̂)3`′′′(θ̂)/`′′(θ̂) +

1

12
(θ − θ̂2)`(4)(θ̂)/`′′(θ̂)}]dθ

=

∫
e−

1
2

(θ−θ̂)2j(θ̂)[1 +
1

3
(θ − θ̂)3`′′′(θ̂)/`′′(θ̂) +

1

12
(θ − θ̂2)`(4)(θ̂)/`′′(θ̂)}

+
1

18
(θ − θ̂)6{`′′′(θ̂)/`′′(θ̂)}2]dθ

and the remainder terms are the central moments for θ in the N(θ̂, j−1(θ̂))
distribution.
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