
STA 3000F (Fall, 2013)

Comments on Homework 2

1. Non-uniqueness of ancillary statistics. Suppose that (Y1, Z1), . . . (Yn, Zn)
are independent and identically distributed and follow a bivariate nor-
mal distribution with E(Yi) = E(Zi) = 0, var(Yi) = var(Zi) = 1, and
core(Yi, Zi) = θ, −1 < θ < 1. This is an example of a curved exponen-
tial family; it can be written in exponential family form, but the two
canonical parameters are constrained to one dimension.

(a) Show that
∑
Z2
i and

∑
Y 2
i are each ancillary for θ, but that T =∑

(Y 2
i + Z2

i ) is not ancillary.

(b) Derive the first two moments of T/
√
n, and plot the variance of

this as a function of θ.

This is example 2.30 in Cox & Hinkley, where the conclusion is that
the variance of T is “not too strongly dependent on θ”, which is why
I asked you to plot it. As you can easily see, it varies between 4 and
8, i.e. between 2 and 2

√
2
.
= 3.4 on the standard deviation scale, and

since the mean is 2
√
n this probably is fairly small for moderate n.

C&H require ancillary statistics to be functions of the minimal suffi-
cient statistic, which is (ΣYiZi,ΣY

2
i + ΣZ2

i ), so conclude that there is
no ancillary statistic for this model. Many other books require only
that ancillary statistics be functions of the original data. From that
point of view, we could condition on either ΣY 2

i or ΣZ2
i , but I haven’t

worked it out so I don’t know if the inference from these two condi-
tional distributions would be different. If they are, then the principle
“condition on an ancillary statistic” doesn’t help us here.

2. Logistic regression. Suppose Yi are independent Bernoulli random vari-
ables, with density

f(yi) = pyii (1− pi)1−yi , y = 0, 1,

and that
log

pi
1− pi

= x′iβ,

where xi and β are vectors of length p.
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(a) Write the joint density of (y1, . . . , yn) in exponential family form,
and give an expression for the minimal sufficient statistic S =
(S1, . . . , Sp), say.

(b) Show that the conditional distribution of Sj, given S(−j), depends
only on βj.

This result applies to any exponential family when interest is in any
linear combination of the canonical parameters. The importance of
the result is that inference for βj can be based on this conditional
distribution, which is now a 1-parameter distribution, so no estimation
of the nuisance parameters β(−j) is needed. The usual 1-parameter
pivotal quantities, re, ru, and r are all available for inference, and the
limit theorems based on the conditional likelihood function are all valid,
even if the dimension of β(−j) increases with the sample size.

3. Suppose that Yi are independent exponential random variables with
E(Yi) = ψλi, and Zi are independent exponential random variables
with E(Zi) = ψ/λi, i = 1, . . . , n.

(a) Find the maximum likelihood estimates of λi and ψ.

(b) Show that ψ̂ is not consistent for ψ as n→∞.

This class of problems, with one nuisance parameter per pair, or group,
of observations, and then with the number of groups going to ∞,
but the group size staying fixed, are called “Neyman-Scott” prob-
lems, after Neyman & Scott (1948, Econometrica). Their two exam-
ples were normal theory examples; in the first (Yi, Zi) are independent
N(µi, σ

2), i = 1, . . . , n. Each pair has a different mean, which will be
estimated by the sample mean (Yi + Zi)/2. The maximum likelihood
estimator of σ2 converges to σ2/2 as n → ∞. It is not surprising that
we’d get poor estimates of the mean, but it would seem on the surface
that we should be able to estimate the variance well since all 2n ob-
servations have the same variance. The other normal theory problem
is groups of size nj with the same mean, but different values of σ2; in
this case the maximum likelihood estimator of µ is consistent, but an
estimator with a smaller asymptotic variance can be constructed. See
CH Example 5.8 and Exercise 9.3.
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4. Regression-scale models Suppose y = (y1, . . . , yn)T have independent
components with density

1

σ
f0(

yi − xTi β
σ

),

where f0(·) is a known density on R. In HW 1 you showed that a is
ancillary, where ai = (yi − xTi β̃)/σ̃, and the estimators β̃ and σ̃ are
given by

β̃ = (XTX)−1XTy, σ̃2 = (y −Xβ̃)T (y −Xβ̃)/(n− p).

(In HW1 we called these β̂, σ̂, but I’ll use this notation below for the
maximum likelihood estimators.)

(a) Show that under the transformation yi → cyi + xTi b, where c > 0,
and b = (b1, . . . , bp) is a vector in Rp, that we have

β̃ → cβ̃ + b, σ̃2 → c2σ̃2.

Estimators with this property are called equivariant.

(b) Show that the associated ancillary statistic ã = (y − Xβ̃)/σ̃ is
invariant under the transformation in (a).

(c) Show that the maximum likelihood estimators of β and σ are also
equivariant, and the associated set of residuals â = (y−Xβ̂)/σ̂ is
invariant.

(d) Deduce that the distribution of â is free of (β, σ), and thus is also
ancillary.

Parts (a) - (c) are pretty straightforward. For part (d), one shows that
the distribution of â is the same for any two different parameter values
(β, σ) and (β′, σ′), say, using the transformation property of the model,
and since these are arbitrarily chosen the distribution of â is ancillary.
You can also use results on maximal invariants in, for example, TSH
Ch. 4(?).

5. Orthogonal parameters. In a model f(y; θ) with θ = (ψ, λ), the com-
ponent parameters ψ and λ are orthogonal (with respect to expected
Fisher information) if iψλ(θ) = 0.
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(a) Assume yi follows an exponential distribution with mean λe−ψxi ,
where xi is known. Find conditions on the sequence {xi, i =
1, . . . , n} in order that λ and ψ are orthogonal with respect to ex-
pected Fisher information. Find an expression for the constrained
maximum likelihood estimate λ̂ψ and show the effect of parameter
orthogonality on the form of the estimate.

(b) Suppose that y1, . . . , yn are independently normally distributed
with mean

E(yi) =
αxi
β + xi

,

where x1, . . . , xn are known constants, and variance σ2. This
is called the Michaelis-Menten model, used in chemical kinetics.
Show that (α, σ2, χ) are mutually orthogonal, where

χ =
∑ α3x2i

(β + xi)3
.

The last part was trickier than I thought it would be, because it requires
keeping careful attention on what is fixed and what varies when one
takes partial derivatives. Here is how I did it: Define

`∗(α, χ, σ2) = `(α, β(χ, α), σ2).

Then

∂`∗(α, χ, σ2)

∂α
=
∂`(α, β(χ, α), σ2)

∂α
+
∂`(α, β(χ, α), σ2)

∂β

∂β(χ, α)

∂α
,

and

∂2`∗

∂χ∂α
=

∂

∂χ

{
∂`(α, β(χ, α), σ2)

∂α
+
∂`(α, β(χ, α), σ2)

∂β

∂β(χ, α)

∂α

}
,

=
∂2`

∂α∂β

∂β

∂χ
+
∂2`

∂β2

∂β

∂χ

∂β

∂α
+
∂`

∂β

∂2β

∂χ∂α
,

and on taking expected values the final term is 0 so

i∗αχ(α, χ, σ2) = iαβ(α, β, σ2)
∂β

∂χ
+ iββ(α, β, σ2)

∂β

∂χ

∂β

∂α

=
∂β

∂χ

(
iββ + iββ

∂β

∂α

)
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Then
∂β

∂α
=
∂χ/∂α

∂χ/∂β
,

and the proof that the term in brackets above is zero follows from
detailed calculation of the derivatives. The other cross-terms are much
easier, because, for example

∂`∗

∂χ∂σ2
=

∂

∂χ

{
∂`

∂σ2

}
=

∂2`

∂σ2∂β

∂β

∂χ
,

and since the final factor does not depend on y, the orthogonality of
χ and σ2 follows from that of β and σ2. In any normal theory linear
model, the mean parameters are orthogonal to the parameters in the
variance.
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