
STA 3000F (Fall, 2013)

Notes on Q1, Homework 1.

Question

Suppose that random variables Yr follow the first order autoregressive
process

Yr = µ+ ρ(Yr−1 − µ) + εr,

where ε1, . . . , εn are i.i.d. N(0, σ2) and |ρ| < 1. Write down the likeli-
hood for data y1, . . . , yn in the cases where the initial value y0 is

(a) a given constant;

(b) normally distributed with mean µ and variance σ2/(1− ρ2);
(c) assumed equal to yn.

Find the minimal sufficient statistic for θ = (µ, ρ, σ2) in each case.

Solution

The question in C&H actually reads, “Write down the likelihood for
data y0, . . . , yn ...”; in this correctly worded version the solution goes
as follows:

f(y0, . . . , yn; θ) =
1

(
√

2πσ)n−1

n∏
i=1

exp[− 1

2σ2
{yi − µ− ρ(yi−1 − µ)}2]f(y0; θ),

writing the joint density as a product of conditionals, and using the
Markov property.

The exponent when squared involves the following statistics:

n∑
i=1

y2i ,
n∑

i=1

y2i−1,
n∑

i=1

yi,
n∑

i=1

yi−1,
n∑

i=1

yiyi−1. (1)

Since
∑n

i=1 yi−1 =
∑n−1

i=0 yi, the third and fourth terms can be computed
from

∑n
i=1 yi, yn, y0, and the 1st and 2nd terms can be computed from∑n

i=1 y
2
i , yn, y0 as well. Thus (1) is equivalent to

(
n∑

i=1

y2i ,
n∑

i=1

yi,
n∑

i=1

yiyi−1, y0, yn). (2)
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In (a), f(y0) is a point mass at y0, so no additional functions of the data
are needed to compute the log-likelihood function, and no simplification
is available either. In (b) f(y0; θ) depends on y20 and y0, but again these
already appear (2) so no additional functions are needed, nor are there
any simplifications. In (c), when y0 = yn, so f(y0) is a point mass
at yn, then

∑n−1
i=0 yi =

∑n
i=1 yi, and similarly for

∑n−1
i=1 y

2
i , so that the

endpoint corrections y0, yn are not needed, and we have a 3-dimensional
sufficient statistic.

In (a) strictly speaking y0 is not part of the sufficient statistic, because
it is a fixed constant, although the solution given by C&H doesn’t make
this distinction.

In the version of the question that I gave, the joint density is

f(y1, . . . , yn; θ) =
1

(
√

2πσ)n−1

n∏
i=2

exp[− 1

2σ2
{yi − µ− ρ(yi−1 − µ)}2]f(y1; θ),

and f(y1; θ) =
∫
f(y1 | y0; θ)f(y0; θ)dy0. The product term now de-

pends on
n∑

i=2

yi,
n∑

i=2

y2i ,
n∑

i=2

yi−1,
n∑

i=2

y2i−1,
n∑

i=2

yiyi−1. (3)

In the case that y0 is fixed, f(y1) is the density of a N(µ+ρ(y0−µ), σ2),
so the joint density depends on

n∑
i=1

y2i ,
n∑

i=1

yi,
n∑

i=1

yiyi−1, y0, yn,

as above, although again y0 isn’t strictly speaking a statistic.

In the case that y0 follows the stationary distribution given in (b), then
so does y1, in which case the joint density has an exponent that depends
on

n∑
i=1

y2i ,
n∑

i=1

yi, yn,
n∑

i=2

yiyi−1, (4)

which is a bit different than for the likelihood based on (y0, . . . , yn).

Finally, in the case that y0 = yn, we don’t get the simplification that
we do for the likelihood based on (y0, . . . , yn), because the sums start
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at 1. (We would if I had written “y1 = yn”.) David F showed
that the marginal distribution of y1 in this case is N(µ, β), where
β =

∑
k ρ

2(n−k+1σ2. This then contributes a term as in (b), and no
simplification is possible.

I didn’t mark this very rigidly – most people wrote down L(θ; y0, . . . , yn)
without being very specific about it. Let me know if I overlooked
anything in your solution.

These statistics are minimal sufficient because they determine the like-
lihood function.
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