
STA3000: Asymptotic theory for likelihood

Assume we have a sample Y = (Y1, . . . , Yn), where the Yi are independent, identi-
cally distributed with density f(yi; θ). Refer to the handout of October 4 for the
definitions and orders of magnitude of the score function, maximum likelihood esti-
mate, observed and expected Fisher information. Also there we give the first order
theory for θ in the case that θ is a vector of length k, as well as the special case
k = 1. The vector version results are repeated here:
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from which we have the approximations
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A moderately rigorous proof of (2) and (3) follows, for scalar θ. The vector case
is unchanged, except for tedious notational changes in the Taylor series, although
of course we need the dimension of θ fixed as n → ∞.
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The term in brackets on the LHS of the last line converges in probability to 1,
by the WLLN, so can be written 1 + op(1). The remainder term Zn converges in

probability to 0, because we assume θ̂
p→ θ, so that θ∗n

p→ θ, because |θ̂−θ| < |θ∗n−θ|.
Also 1
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p→ E{ℓ′′′(θ; Y )} which we assume is finite (p.281 of CH, for example);

similarly − 1
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p→ i1(θ), so Zn = op(1)O(1) = op(1). Then we can move over the
LHS term as
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because 1 + op(1) is the same as 1− op(1), and {1 + op(1)}−1 = 1− op(1).
For (3), we have
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ℓ(θ̂)− ℓ(θ) =
1

2
(θ̂ − θ)2{−ℓ′′(θ̂)}+ 1

6
(θ̂ − θ)3ℓ′′′(θ∗n),

2{ℓ(θ̂)− ℓ(θ)} = (θ̂ − θ)2i(θ){−ℓ′′(θ̂)/i(θ)}{1 + 1
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= (θ̂ − θ)2i(θ)(1 + Zn)

where again Zn

p→ 0 as above.
This begs the question of whether the maximum likelihood estimator is the root

of ℓ′(θ̂) = 0, and whether the maximum likelihood estimator converges in probability
to θ. Wald’s proof of the consistency of the MLE relies on showing (roughly) that
the likelihood function is maximized at the true value, in the limit, so that the
parameter point that maximizes the likelihood function will converge to that true
value. However the devil is in the details. A good discussion is given in Knight,
Ch.4; there is more detail in van der Waart, Ch. 5.

An easier approach is to assume enough about the density to be able to prove that
there are consistent solutions to the score equation; then if the likelihood function
has its maximum in the interior of the parameter space, and the solution to the
score equation is unique, it is the MLE. TPE gives the details for this approach; I
also found the encylopedia article by Scholz very helpful.

BNC avoid all these problems by just assuming that the score equation gives
the MLE, and ’enough regularity’ on the model to ensure consistency. After that
asymptotic normality follows if one has a central limit theorem for the score function.
This can hold much more generally that in the i.i.d. setting.
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