
Second Term Exam STA 3000Y1Y
Friday April 15, 2011

Instructions: Answer all 4 questions in the exam booklets. Be as precise as pos-
sible in your answers, stating clearly the theorems and assumptions you are using.
Questions are of equal value.

1. Given a model f(y; θ) for a variable Y ∈ R and parameter θ ∈ R, consider
a one-to-one reparameterization ϕ = ϕ(θ). Denote the log-likelihood function
for θ by `(θ), and that for ϕ by `∗(ϕ).1

(a) Use the chain rule to show that

i∗(ϕ) = i(θ)

(
∂θ

∂ϕ

)2

, (1)

where i(θ) and i∗(ϕ) are the expected Fisher information based on `(θ) and
`∗(ϕ), respectively. Show that a similar result holds for observed Fisher
information when it is evaluated at the maximum likelihood estimator,
but not otherwise.

`∗(ϕ) = l(θ(ϕ))

`∗
′
(ϕ) = `′(θ)θ′(ϕ)

`∗
′′
(ϕ) = `′′(θ)θ′′(ϕ) + `′(θ)θ′′(ϕ)

E{−`∗′′(ϕ)} = i(θ){θ′(ϕ)}2, because E{`′(θ) = 0,

−`∗′′(ϕ̂) = −`′′(θ̂){θ′(ϕ̂)}2, because `′(θ̂) = 0,

and θ(ϕ̂) = θ̂ by invariance of the maximum likelihood estimator.

(b) When θ ∈ Rp, we write the vector version of (1) as

i∗(ϕ) =

(
∂θ

∂ϕ

)T
i−1(θ)

(
∂θ

∂ϕ

)
.

1Even though they are essentially the same, i.e. `∗(ϕ; y) = `(θ(ϕ); y)), where θ(·) is the inverse
function.
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Consider the three asymptotic chi-squared pivots for inference on θ:

w(θ) = 2{`(θ̂)− `(θ)},

wu(θ) =

(
∂`(θ)

∂θ

)T
i(θ)

∂`(θ)

∂θ
,

we(θ) = (θ̂ − θ)T i(θ)(θ̂ − θ),

where θ̂ is the maximum likelihood estimate, which we assume is obtained
as the unique solution of the score equation ∂`(θ)/∂θ = 0.

Show that w(θ) and wu(θ) are invariant under one-to-one reparametriza-
tions of θ, but that we(θ) is not.

w = 2{`(θ̂)− `(θ)} = 2{`∗(ϕ(θ̂)− `∗(ϕ(θ))} = 2{`∗(ϕ̂)− `∗(ϕ)}

w∗u(ϕ) =

(
∂`(ϕ)

∂ϕ

)T
i∗(ϕ)

∂`(ϕ)

∂ϕ

=

(
∂θ

∂ϕ

∂`

∂θ

)T (
∂θ

∂ϕ

)−1
i−1(θ)

(
∂θ

∂ϕ

)−T
∂θ

∂ϕ

∂`

∂θ

=

(
∂`(θ)

∂θ

)T
i(θ)

∂`(θ)

∂θ

w∗e(ϕ) = (ϕ̂− ϕ)T i∗(ϕ)(ϕ̂− ϕ) = (ϕ(θ̂)− ϕ(θ))

(
∂θ

∂ϕ

)T
i(θ)

(
∂θ

∂ϕ

)
(ϕ(θ̂)− ϕ),

which is clearly not invariant, as there is a change of scale.

2. Suppose Y follows a Poisson distribution with probability mass function

f(y; θ) = θye−θ/y!, y = 0, 1, 2, . . . ; θ > 0.

Assume a Gamma prior for θ:

π(θ) =
1

Γ(β)
αβθβ−1e−αθ;

this prior distribution has mean E(θ) = β/α and variance var(θ) = β/α2.
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(a) Find the Bayes estimator of θ under squared error loss.

(Most people assumed a sample of size n, but this was not required.) The
Bayes estimator under squared-error loss is the mean of the posterior:

π(θ | y) ∝ θy+β−1e−(α+1)θ,

which is the kernel of a Gamma distribution with shape y + β and scale
α + 1. The mean of this distribution is

θ̃B(y) = E(θ | y) =
y + β

α + 1
.

(b) Find the Bayes risk of the estimator in (a), as a function of α and β.

The Bayes risk is rB =
∫
R(θ, θ̃B(y))π(θ)dθ, and R(θ, θ̃B) = EY |θ{(θ̃B −

θ)2} = var(θ̃B(Y )) + E2(θ̃B(Y )). Thus

rB =

∫
varPoisson(

y + β

α + 1
) + (EPoisson(

y + β

α + 1
− θ)2π(θ)dθ

=

∫
{ θ

(α + 1)2
+ (

θ + β

α + 1
− θ)2}π(θ)dθ

=
EGamma(θ)

(α + 1)2
+
EGammaθ

2(−α2 − 2α)

(α + 1)2
+
EGamma(θ)(2β)

(α + 1)2
+

β2

(α + 1)2
,

, which doesn’t simplify into anything very nice (sorry).

(c) How could you use this result to find the minimax estimator of θ, if it
exists?

A Bayes estimator which has constant frequentist risk is minimax: i.e. can
we choose α, β so that R(θ, θ̃B) = c. Since this expression is a quadratic
in θ, we need the coefficient of θ2 and θ to be zero. The coefficient of θ2 is
1− 2α, but the coefficient of θ is −2βα, so only β = 0 would work, which
gives an improper prior.

3. Consider a linear regression model

yi = α + βxi + εi, i = 1, . . . , n

where the εi are independent and follow a N(0, σ2) distribution. Thus the joint
density is

f(y;α, β, σ2) =

(
1√
2πσ

)n
exp{− 1

2σ2

∑
(yi − α− βxi)2}.
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We will consider inference for σ2.

(a) Give an expression for the profile log-likelihood ratio statistic

wp(σ2) = 2{`p(σ̂2)− `p(σ2)}

where `p(σ2) = `(α̂σ2 , β̂σ2 , σ2) is the profile log-likelihood function.

(The hint should have appeared further up in the question.) It is easily
verified that the maximum likelihood equations for α and β do not depend
on σ2, thus

α̂σ2 = α̂ = ȳ, β̂σ2 = β̂ = Sxy/Sxx.

The maximum likelihood estimate of σ2 is

σ̂2 =
1

n

∑
(yi − α̂− β̂xi)2.

Thus

`p(σ2) = −n
2

log σ2 − 1

2σ2
nσ̂2

`p(σ̂2) = −n
2

log σ̂2 − n

2
wp(σ2) = n log σ2 + nσ̂2/σ2 − n log σ̂2 − n

= n

{
log

(
σ2

σ̂2

)
−
(

1− σ̂2

σ2

)}

(b) Show that σ2 is orthogonal to α and β with respect to expected Fisher
information.

It probably follows from the result above α̂σ2 = α̂, β̂σ2 = β̂, but is easily
proved directly:

∂`(α, β, σ2)

∂α
=

1

σ2

∑
(yi − α− βxi)

∂2`(α, β, σ2)

∂α2
= − 1

σ4

∑
(yi − α− βxi)

∂`(α, β, σ2)

∂β
=

1

σ2

∑
(yi − α− βxi)xi

∂2`(α, β, σ2)

∂β2
= − 1

σ4

∑
(yi − α− βxi)xi

and the second derivatives have mean 0 since E(yi) = α + βxi.
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(c) Give an expression for the adjusted profile log-likelihood ratio statistic

wa(σ
2) = 2{`a(σ̂2)− `a(σ2)}

where

`a(σ
2) = `p(σ2)− 1

2
log |jλλ(α̂σ2 , β̂σ2 , σ2)|,

where jλλ(θ) is the submatrix of the observed Fisher information matrix
for the nuisance parameter λ = (α, β).

First we calculate `αα = −nα/σ2, `αβ = −
∑
xi/σ

2 = 0, `ββ = −
∑
x2i /σ

2,
so

|jλλ(α̂, β̂, σ2)| ∝ σ−4,

and thus

`a(σ
2) = −n

2
log σ2 − 1

2σ2
nσ̂2 − 1

2
log(σ−4)

= −n− 2

2
log σ2 − nσ̂2

2σ2

wa(σ
2) = (n− 2) log

(
σ2

σ̂2

)
− n

(
1− σ̂2

σ2

)

(d) Compare the result in (b) to the exact marginal likelihood for σ2 obtained
from the distribution of the residual sum of squares∑

(yi − α̂− β̂xi)2.

Hint: Simplify some calculations by assuming that
∑
xi = 0.

The density of a χ2
ν distribution is

1

Γ(ν/2)

1

2ν/2
xν/2−1e

−x/2.

This should have been included on the exam. Thus, since

nσ̂2

σ2
∼ χ2

n−2,

it has density proportional to

(σ−2)(n−2)/2 exp{−nσ̂
2/2σ2

}
,
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and the log-likelihood for this distribution is

`m(σ2) = −
(
n− 2

2

)
log σ2 − nσ̂2

σ2
,

which is equal to `a(σ
2) above. The marginal likelihood for σ2 is sometimes

called ”REML”, for restricted maximum likelihood, and can be extended
to normal theory linear models with fixed and random effects.

4. Suppose Y1, . . . , Yn are independent and identically distributed from a model
f(y; θ), y ∈ R, θ ∈ R, and that π(θ) is a proper prior density (with respect to
Lebesgue measure on R). Denote by θ̂π the posterior mode:

θ̂π = arg sup
θ
π(θ | y)

which we assume is obtained as the unique root of the equation

d

dθ
log π(θ̂π | y) = 0. (2)

This question was downweighted because it involved too much calculation. This
was the question I meant to ask on HW3, and I should have asked the HW3
question here, because it is much easier.

(a) Write the posterior density in the form

π(θ | y) =
exp{`(θ) + log π(θ)}∫
exp{`(θ) + log π(θ)}dθ

,

and expand the integrand in the denominator about θ̂π to show that the
asymptotic posterior distribution of θ̂π is normal with mean θ. Give an
expression for the asymptotic variance.

(I should have said “expand the exponent in the numerator and denomi-
nator”.)

Let `π(θ) = `(θ) + log π(θ), and write

`π(θ) = `π(θ̂π) + (θ − θ̂π)`′π(θ) +
1

2
(θ − θ̂π)2`

′′

π(θ̂π) +Rn

exp{`π(θ)} = exp{`π(θ̂π)} exp{1

2
(θ − θ̂π)2`

′′

π(θ̂π) +Rn}

= exp{`π(θ̂π)}
√

2π| − `′′π(θ̂π)|−1/2 exp{1

2
(θ − θ̂π)2`

′′

π(θ̂π)}(1 + rn);
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on inserting this into the numerator and denominator, and assuming rn =
op(1), we have

π(θ | y)
·∼N(θ̂π, j

−1(θ̂π)).

We will have rn
p→0 if θ̂π − θ

p→0 and the 3rd derivative of `π is bounded
in expectation, which follows from the usual assumptions on ` and some
smoothness constraints on the prior.

(b) Show that

θ̂π − θ̂ = Op(
1

n
).

Hint: Expand (2) and `′(θ̂) in a Taylor series around θ.

From `′(θ̂) = 0 and `′π(θ̂π) = 0 we have

`′π(θ) + (θ̂π − θ)`
′′

π(θ)
.
= `′(θ) + (θ̂ − θ)`′′(θ)

from which we can write

(θ̂π − θ̂)`′′(θ) = θg′′(θ)− g′(θ),

where g(θ) = log π(θ). Since `′′(θ) = Op(n), we have

θ̂π − θ̂ = Op(1/n)

as long as θg′′(θ)− g′(θ) = O(1), i.e. is bounded.

Actually we should be looking as well at the remainder terms in the two
expansions, say

R1n =
1

2
(θ̂π − θ)2`

′′′

π (θ∗), R2n =
1

2
(θ̂ − θ)2`′′′(θ∗∗)

where θ∗, θ∗∗ are between θ and θ̂π, θ̂, respectively. These remainder terms
are Op(1) under the usual assumptions, since, for example, (θ̂ − θ)2 =
Op(1/n) and (1/n)`′′′(θ∗∗) converges to its expected value.

7


