
First Term Exam STA 3000Y1Y
Friday December 6, 2013

10.00 – 13.00

Instructions: Answer all questions in the exam booklets. Be as precise as possible
in your answers, stating clearly the results and assumptions you are using. Questions
are each worth 25 points.

I gave 6 points for each part of 4-part questions and 8 points for each part of 3-part
questions, with a +1 gratis on each.

1. Suppose Y0, . . . , Yn are distributed as a Poisson birth process, i.e. the condi-
tional density of Yj+1, given Yj = yj, is Poisson with mean θyj:

f(yj+1 | yj; θ) =
(θyj)

yj+1

yj+1!
exp(−θyj), yj+1 = 0, 1, . . . , θ > 0.

(a) Assuming Y0 follows a Poisson(θ) distribution, find the likelihood function
for θ based on (y0, . . . , yn).

(b) Give an expression for the minimal sufficient statistic for θ.

(c) Give an expression for the maximum likelihood estimate, and describe
how you might determine its distribution.

The likelihood function is constructed in the usual way for a Markov process:
L(θ; y) = f(y0; θ)

∏n
j=1 f(yj | yj−1; θ), leading to

L(θ; y) ∝ θs0 exp(−θs1 + 1), s0 = Σn
0yj, s1 = Σn−1

0 yj,

so the likelihood statistic is (Σn
0yi, yn) or (s0, s1), or any one-to-one function of

this. This is minimal because it determines the likelihood map; more formally
L(θ; y)/L(θ; y′) is free of θ if and only if s(y) = s(y′), by properties of polyno-
mials (θs0), and exponentials (exp(θs1)). The maximum likelihood estimator is
θ̂ = s0/(s1 + 1), obtained by solving `′(θ; y) = 0, where `(·; y) = logL(·; y), and
checking that the second derivative is negative. I thought at first that it might
be possible to obtain the exact distribution of θ̂ using properties of the Pois-
son distribution, but this looks hard. Everyone gave the more obvious answer,
that we could use any of our pivotal quantities, for example (θ̂ − θ)j1/2(θ̂),
or
√

2[`(θ̂) − `(θ)] for inference, each of these being approximately normally
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distributed. On reflection, it’s not clear that the usual asymptotics applies, be-
cause the observations are dependent. We need a central limit theorem for the
score function, which can probably be established using the Markov property,
and we need j(θ̂)/i(θ) to converge to 1; this is not guaranteed in dependent
data settings, but I haven’t tried to work it our for this example. See BNC,
Ch 9.3. These considerations did not affect the marking.

2. Suppose Y1, . . . , Yn are independent and identically distributed from a density
f(y; θ), θ ∈ R. Denote the log-likelihood function for the sample by `(θ; y), and
the total expected Fisher information for θ by i(θ).

(a) Using Taylor series expansions show that

2{`(θ̂)− `(θ)} = (θ̂ − θ)2i(θ) + op(1),

under the model f(y; θ), and describe the assumptions on the model
needed to establish this. Here θ̂ is the maximum likelihood estimator,
assumed to be the unique solution of the score equation `′(θ) = 0.

This was pretty straightforward after the agony and ecstasy of HW 3. I was
fairly lenient with the treatment of the remainder term, as long as it was
sketched plausibly.

(b) Assume now that θ = (ψ, λ) with ψ ∈ R, λ ∈ Rk. Define the profile log-
likelihood function for ψ, and explain how it can be used for approximate
inference about ψ.

ditto

(c) Let Y1, . . . , Yn be independent observations from the gamma distribution
with shape parameter α and mean µi, where µ−1i = β0 + β1xi. Find an
expression for the profile log-likelihood for α. Show that α is orthogonal
to (β0, β1) with respect to expected Fisher information. What does this
tell you about the variance of the limiting distribution of α̂?

Sorry I meant to give you the density for a single observation from the gamma:
Γ(α)−1(α/µi)

αyα−1i exp(−yiα/µi). The constrained maximum likelihood esti-

mators β̂0,α and β̂1,α cannot be given explicitly, but they solve
∑
yi =

∑
µi(β̂0, β̂1)

and
∑
yixi =

∑
xiµi(β̂0, β̂1), as is usual in generalized linear models, and turn

out not to depend on α. I think this implies directly that α and β are orthog-
onal parameters, but calculating i(θ) is easy enough as well. The parameters
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being orthogonal means the limiting variance of α̂ is i−1αα(θ), with no need to
worry about adjustments for β. And means the covariance of the limiting joint
distribution of α̂, β̂ is 0, i.e. α̂ and β̂ are asymptotically independent. Or-
thogonality alone doesn’t imply that the asymptotic variance of α̂ is free of
β, although in this example, with the stronger orthogonality β̂α = β̂, that is
indeed the case.

3. Let Y1, . . . Yn be i.i.d. from the density

f(y; θ) = exp{−(y − θ)}, y > θ.

To test the hypothesis H0 : θ = 1 against H1 : θ > 1 a critical region of the
form wα = {y(1) > c} is proposed, where y(1) = min(y1, . . . yn).

(a) Determine c so this critical region has size α.

(b) Sketch the power function of this test.

(c) Justify the choice of the critical region above, or suggest a better one.

The joint density is

f(y; θ) = exp(Σyi − nθ)1{y(1) > θ},

where 1{·} is the indicator function. From this we see that y(1) is minimal
sufficient, which essentially answers (c). The value of c is determined from the
distribution of Y(1), which has 1 − FY(1)(y(1)) = exp{−n(y(1) − θ)}1{y(1) > θ},
since Pr(Y(1) > c) =

∏
Pr(Yi > c). Substituting θ0 = 1 gives the critical

region: cα = 1 − n−1 logα. Substituing θ gives the power function, which is
exponentially increasing, until it hits 1 and stays there, at θ =? (your task).

4. Suppose that (Y1i, Y2i), i = 1, . . . , n follow the bivariate normal distribution
with mean (θ1, θ2) and identity covariance matrix: the joint distribution of the
sample (y1, y2) = (y11, . . . , y1n, y21, . . . , y2n) is then

f(y1, y2; θ) =

(
1

2π

)n
exp−1

2
{
∑

(y1i − θ1)2 +
∑

(y2i − θ2)2}.

The parameter space is restricted to θ1 ≥ 0, θ2 ≥ 0.

(a) Show that the maximum likelihood estimators of θ1 and θ2 are given by

θ̂1 = max(ȳ1, 0), θ̂2 = max(ȳ2, 0).
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(b) Derive the form of the log-likelihood ratio statistic w(θ0) = 2{`(θ̂)−`(θ0)}
for testing H0 : θ = θ0 = (0, 0). (It has a different expression for (ȳ1, ȳ2)
in each of the 4 quadrants of the plane.)

(c) By considering these four quadrants, argue that the distribution of w(θ0),
under H0, is

1

4
δ{0} +

1

2
χ2
1 +

1

4
χ2
2,

where δ{0} is a point mass at 0.

This question was on an old comprehensive exam. It’s the only example we did
of a non-regular problem, where the maximum is on the boundary of the pa-
rameter space if the sample mean(s) are negative. Thus the exact distribution
of the log-likelihood ratio statistic w(θ0) is a mixture of χ2’s, with differing de-
grees of freedom (sometimes a point mass at 0 is identified with a χ2

0). A more
realistic example is the random effects model, the simplest version of which is

yij = µ+ bi + εij, j = 1, . . . ,m; i = 1, . . . , k,

with bi ∼ N(0, σ2
b ) and εij ∼ N(0, σ2), all independent of each other. The solu-

tions of the score equations for σ2
b and σ2 can lead, in some samples, to negative

estimates of σ2
b , so the maximum likelihood estimate is on the boundary of the

parameter space, and the log-likelihood ratio statistic for σ2
b has a distribution

with a point mass at 0, and follows a χ2 distribution otherwise. The classic
reference for this is Self and Liang (1987, JASA).

5. Bonus Question (5 bonus points): Assume that Y follows a distribution
f(y; θ1, θ2), for θ = (θ1, θ2) ∈ R2. Prove that if T1 = t1(Y ) is sufficient for θ1
when θ2 is known, and T2 = t2(Y ) is sufficient for θ2 when θ1 is known, then
(T1, T2) is sufficient for θ.

This is also from an old comprehensive exam. This solution thanks to David
Soave uses the factorization theorem. First, fix θ2 = θ02. (This notation isn’t
strictly necessary, but makes things clearer.) Then by the first condition,

f(y; θ1, θ
0
2) ∝ h1(t1(y); θ1, θ

0
2)g1(y; θ02).

By the second condition,

g1(y; θ02) = h2(t2(y); θ02)g2(y).

Putting these together and allowing θ02 to be arbitrary gives the result. It’s also
possible to get the result from the conditional distribution of y, given t1, t2, but
I think this version is easier.
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