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Introduction
I Statistics needs a healthy interplay between theory and

applications
I theory meaning Foundations, rather than theoretical

analysis of specific techniques
I Foundations? suggests a solid base, on which rests a

large structure
I must be continually tested against new applications
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Introduction
I Statistics needs a healthy interplay between theory and

applications
I theory meaning Foundations, rather than theoretical

analysis of specific techniques
I Foundations? suggests a solid base, on which rests a

large structure
I must be continually tested against new applications

I The notion that this can be captured in a simple
framework, much less a set of mathematical axioms,
seems dangerously naive Fisher 1956

I Foundations in Statistics depend on, and must be tested
and revised, in the light of experience

I and assessed by relevance to the very wide variety of
contexts in which statistical considerations arise
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... introduction
I A formal theory of inference is just a small part of the

challenges of statistical work
I Equally important are aspects of

I study design
I types of measurement
I formulation of research questions
I connecting these questions to statistical models
I ...
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... introduction
I A formal theory of inference is just a small part of the

challenges of statistical work
I We must also consider

I study design
I various aspects of measurement
I formulation of research questions
I connecting these to statistical models
I ...

I but not in this talk
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Outline
1. the role of probability
2. some classical principles: sufficiency, ancillarity, likelihood
3. some less classical compromises: pivotals, strong

matching, asymptotics, bootstrap
4. some thoughts on the future
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Role of probability
I central to most formulations of statistical issues
I but not all, e.g. algorithmic approaches popular especially

in machine learning Breiman 1999
I theory of probability has been liberated from discussions of

its meaning via Kolmogorov’s axioms
I except possibly the modification needed for quantum mechanics,

and notions of upper and lower probability
I statisticians do not have this luxury!
I we continue to be engaged by the distinction between

I probability representing physical haphazard variability
Jeffreys – “chances”

I probability encapsulating, directly or indirectly, aspects of
the uncertainty of knowledge
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Probability and empirical variability
four related, but different, approaches

1. the data are regarded as a random sample from a
hypothetical infinite population; frequencies within this are
probabilities; some aspect of these represent the target of
inference

2. the data form part of a long real or somewhat hypothetical
process of repetition under constant conditions; limiting
frequencies in this repetition are the probabilities of
interest; some aspect ...

3. either 1., 2. or both, plus an explicit, idealized, description
of the physical, biological, ... processes that generated the
data

4. either 1., 2. or both, used only to describe the
randomization in experimental design or in sampling an
existing population; leading to the so-called design
approach to analysis
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... empirical variability
I probabilities represent features of the “real” world, of

course in somewhat idealized form, and, given suitable
data, are subject to empirical test and improvement

I conclusions of statistical analysis are to be expressed in
terms of interpretable parameters describing such a
probabilistic representation of the system under study

I enhanced understanding of the data generating process
as in epidemics, for example

Principles of Statistical Inference Reid & Cox, WSC2013 11



Probability as uncertain knowledge
probability as measuring strength of belief in some uncertain
proposition is sharply different; how do we address this

1. consider that probability measures rational, supposedly
impersonal, degree of belief, given relevant information
Jeffreys 1939 1961

2. consider that probability measures a particular person’s
degree of belief, subject typically to some constraints of
self-consistency

F.P. Ramsey 1926, de Finetti 1937, Savage 1956
seems intimately linked with personal decision making

3. avoid the need for a different version of probability by
appeal to a notion of calibration
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... uncertain knowledge
I we may avoid the need for a different version of probability

by appeal to a notion of calibration
I as assessed by behaviour of a procedure under

hypothetical repetition
I as with other measuring devices

within this scheme of repetition, probability is defined as a
hypothetical frequency

I the precise specification of the assessment process may
requiring some notion of conditioning

Good 1949
I the formal accept-reject paradigm of Neyman-Pearson theory would be

an instance of decision analysis and as such outside the immediate
discussion
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A brief assessment
1. even if a frequency view of probability is not used directly

as a basis for inference it is unacceptable if
I a procedure using probability in another sense is poorly

calibrated
I such a procedure, used repeatedly, gives misleading

conclusions
Bayesian Analysis 1(3) 2006; Wasserman BA 3(3) 2008

2. standard accounts of probability assume total ordering of
probabilities

I can we regard a probability, p = 0.3, say, found from careful
investigation of a real-world effect as equivalent to the
same p derived from personal judgment, based on scant or
no direct evidence?
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... assessment
3. a great attraction of Bayesian arguments is that all

calculations are by the rules of probability theory

I however, personalistic approaches merge seamlessly what
may be highly personal assessments with evidence from
data, possibly collected with great care

I this is surely unacceptable for the careful discussion of the
meaning of data and the presentation of those conclusions
in the scientific literature

I even if essential for personal decision making
I this is in no way to deny the role of personal judgement

and experience in interpreting data; it is the merging that
may be unacceptable
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... assessment
4. another attraction of Bayesian arguments, in principle at

least, is the assimilation of external evidence

I most applications of objective approaches use some form
of reference prior representing vague knowledge

I this is increasingly questionable as the dimension of the
parameter space increases

I important questions concerning higher order matching as
the number of parameters increases seem open

5. a view that does not accommodate some form of model
checking, even if very informally, is inadequate
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Classical Principles
I sufficiency: if f (y ; θ) ∝ f1(s; θ)f2(t | s), inference about θ

should be based on s �

I ancillary: if f (y ; θ) ∝ f1(s | t ; θ)f2(t), inference about θ
should be based on s, given t �\?

I relevant subsets

I likelihood: inference should be based on the likelihood
function ×
likelihood as equivalence class of functions of θ

I × for direct use of the likelihood function, but

I inference constructed from the likelihood function seems to
be widely accepted
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... classical principles
I sufficiency and ancillary become more difficult for

inference about parameters of interest, in the presence of
nuisance parameters

I asymptotic theory provides a means to incorporate these
notions in an approximate sense

I but the details continue to be somewhat cumbersome

I Bayesian methods, being based on the observed data, can
avoid this consideration

I at the expense of specification of prior probabilities
I which is much more difficult in the nuisance parameter

setting
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... classical principles
I a pivotal quantity is a function of the data, y , and

parameter of interest ψ, with a known distribution
I inversion of a pivotal quantity, using its known distribution,

gives a p-value function of ψ, or a confidence distribution
for ψ; i.e. a set of nested confidence regions at any desired
confidence level

I the standardized maximum likelihood estimator is an
example of such a pivotal quantity

I

(θ̂ − θ)/σ̂θ
.∼ N(0, I )

2{`(θ̂)− `(θ)} .∼ χ2
d

σ̂2
θ = −`′′(θ̂)−1
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Some insight from asymptotic theory
I we can construct pivotal quantities to a higher order of

approximation
I for example,

2{`(θ̂)− `(θ)}/{1 + B(θ)/n} .∼ χ2
d O(n−2)

Bartlett 1937(a)M(a)M
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... asymptotic theory
I we can do better, if the parameter of interest ψ is scalar;

nuisance parameters λ vector
I

r(ψ) = [2{`p(ψ̂)− `p(ψ)}]1/2 .∼ N(0,1)

O(n−1/2)

I

r∗(ψ) = r(ψ) +
1

r(ψ)
log

{
Q(ψ)

r(ψ)

}
.∼ N(0,1)

O(n−3/2)

I a large deviation result; leads to very accurate inferences
Brazzale et al. 2008

θ = (ψ, λ) `p(ψ) = `(ψ, λ̂ψ) Q(ψ) = r(ψ) + op(1)
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... asymptotic theory
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... asymptotic theory
I leads to insight about the point of departure between

Bayesian and frequentist methods
Pierce & Peters, 1994; Fraser et al 2010

I because, the corresponding Bayesian pivot is

r∗(ψ) = r(ψ) +
1

r(ψ)
log

{
Qπ(ψ)

r(ψ)

}
I any prior π(θ) for which Q(ψ) = Qπ

B(ψ) ensures Bayesian
inference calibrated for ψ
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... asymptotic theory
I leads to insight about the point of departure between

Bayesian and frequentist methods
Pierce & Peters, 1994; Fraser et al 2010

I because, the corresponding Bayesian pivot is

r∗(ψ) = r(ψ) +
1

r(ψ)
log

{
Qπ(ψ)

r(ψ)

}
I any prior which is calibrated for ψ is not likely to be

calibrated for other components of θ
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... asymptotic theory
I leads to insight about the point of departure between

Bayesian and frequentist methods
Pierce & Peters, 1994; Fraser et al 2010

I because, the corresponding Bayesian pivot is

r∗(ψ) = r(ψ) +
1

r(ψ)
log

{
Qπ(ψ)

r(ψ)

}
I adjustments for high-dimensional nuisance parameters are

the most important ingredient
I these adjustments are built into Q(ψ)

Principles of Statistical Inference Reid & Cox, WSC2013 25



... asymptotic theory
I leads to insight about the point of departure between

Bayesian and frequentist methods
Pierce & Peters 1994; Fraser et al 2010

I because, the corresponding Bayesian pivot is

r∗(ψ) = r(ψ) +
1

r(ψ)
log

{
Qπ(ψ)

r(ψ)

}
I can be replicated by bootstrap sampling under (ψ, λ̂ψ)

DiCiccio & Young 2008 ; Fraser & Rousseau 2008
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Foundations and Applications
I “Foundations must be continually tested against (new)

applications”

I in spite of the likelihood principle, a great deal of applied
work considers the distribution of quantities based on the
likelihood function (maximum likelihood estimator,
likelihood ratio statistic, etc.)

I in spite of theorems on coherence and exchangeability, a
great deal of applied work with Bayesian methods uses
what are hoped to be “non-influential” priors

I the question is whether or not there really are
non-influential

I “non-informative priors are the perpetual motion machine
of statistics” Wasserman 2012
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... foundations and applications
I Are we ready for “Big Data”
I Will statistical principles be helpful?
I Are the classical principles enough?
I “Inferential giants”: assessment of sampling bias, inference

about tails, resampling inference, change point detection,
reproducibility of analyses, causal inference for
observational data, efficient inference for temporal streams

National Academies Press http://www.nap.edu/catalog.php?record_id=18374
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Conclusion
I from our abstract: “statistical theory serves to provide a

systematic way of approaching new problems, and to give
a common language for summarizing results”

I “ideally this foundation and common language ensures
that the statistical aspects of one study or of several
studies on closely related phenomena can, in broad terms,
be readily understood by the non-specialist”

I “However, the continuing distinction between ‘Bayesians’
and ‘frequentists’ is a source of ambiguity and potential
confusion”

I this does not bely the utility of methods that combine
probabilities using Bayes’ theorem

I ‘Math Stat’, the course students love to hate, is more
important than ever!
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