
STA 3000F Testing composite hypotheses 2013

Suppose H0 and H1 are composite null hypotheses, of the form H0 : θ ∈ Θ0, H1 :
θ /∈ Θ0. Any test of level α should have level α for all values of θ in H0: i.e. we
want to maximize PrH1{Y ∈ R} subject to

Prθ{Y ∈ R} ≤ α, ∀θ ∈ Θ0.

The second of these requirements essentially means that we have to know the dis-
tribution of Y under H0, but since this is not specified by H0, R will need to be
determined by some function of Y , say t(Y ), whose distribution is known under H0.
Assume for now that H0 is composite of the form θ = (ψ, λ), with H0 only specifying
ψ,i.e. H0 : ψ = ψ0.
1. Reduction by conditioning
If we can write

fY (y; θ) = f1(s(y)|t(y);ψ)f2(t(y);ψ, λ),

then we’ve found a function of Y whose distribution depends only on ψ, i.e. H0

completely specifies the conditional distribution of S (given T ). Consequently any
test that depends on Y only through S, and considering T fixed, can be ensured to
have level α for all values of λ. (In most cases, (S, T ) is an original reduction from
Y to a minimal sufficient statistic for the full parameter vector (ψ, λ). In that case
the equation above would really be

fY (y; θ) = f1(s(y)|t(y);ψ)f2(t(y);ψ, λ)h(y|s(y), t(y)),

where by sufficiency the third term does not depend on any parameters.) If our
test is constructed using the conditional distribution f1 above, then we’re back to
a simple null hypothesis, and we know how to find first a most powerful test under
a particular alternative, and then how to check if it is uniformly most powerful for
a range of ψ values. To this point there are no obvious optimality claims for the
original problem. However, it can be proved, under fairly weak requirements on the
conditioning statistic T , that all critical regions satisfying∫

R
f(y;ψ0, λ)dy = α,

must be obtained by conditioning on T . Such regions are called similar, and the best
among them called most powerful similar. In several exponential family examples,
the resulting test is uniformly most powerful similar, uniform for ψ > ψ0, but also
uniform over all λ.

2. Reduction by marginalization
If we can write

fY (y; θ) = f1(s(y)|t(y);ψ, λ)f2(t(y);ψ),
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then we’re in a somewhat opposite situation, in which H0 now specifies completely
the marginal distribution of T . Among all tests of H0 that only depend on T , we
can find the most powerful against a particular alternative by applying the Neyman-
Pearson lemma to f2, and then check to see if it’s uniformly most powerful, etc..
With luck, we can find a UMP test, among all tests that are functions of t(Y ). Such
a factorization will typically be obtainable if the distribution of T is ancillary for λ,
when ψ = ψ0. (In the hypothesized factorization above, T is in fact ancillary for λ
for all values of ψ.)

Again, more work is needed to justify the optimality of such tests among the
class of all tests. This is usually handled by an invariance argument. The details of
the argument require a lot of notation, but the basic idea is that if the distribution
of T only depends on ψ, and T in some measure extracts all the information about
ψ, then the best test based on f2 will also be best among all tests based on f . In
applications, T is a maximal invariant statistic for a group of transformations G, say,
that leaves H0 unchanged. It can be proved that the distribution of T depends only
on the maximal invariant parameter, which is in applications equal to or equivalent
to ψ, the parameter of interest. And it can be proved that all tests that are invariant
under the group G must depend only on T . So if we find the optimal test based on
f2, we have automatically found the optimal test among all invariant tests.

3. Remarks
In each of the two cases above, reduction by sufficiency and reduction by an-

cillarity, there are two somewhat distinct arguments being advanced. The first is
pragmatic: if we can factorize the joint density so that we get rid of λ in one factor,
we’ll just use that factor. The second is optimality: to argue that all ‘good’ tests
must essentially be based on the factor that we want to use. Classical studies of
hypothesis testing don’t emphasize the pragmatic aspect, which in any case is hard
to generalize. On the other hand the restriction to certain classes of tests (similar
or invariant) can also be hard to justify, especially when one looks at seemingly
innocuous problems for which ‘reasonable’ tests exist, but similar or invariant tests
may not exist.

The factorizations illustrated above may be an oversimplification, in the following
sense. H0 is a composite hypothesis, say θ ∈ Θ0, which I have assumed above takes
the form ψ = ψ0, λ unspecified, where ψ and λ are in some way the ‘obvious’
parametrization of the problem. In fact we might have the conditional density f1 in
1., or the marginal density f2 in 2., depending on some function of θ that has the
same dimension as the argument of the (conditional or marginal) density. That is,
the reduction referred to above is a reduction in dimension, which is the important
part. So ψ and λ might not be the original parameter of interest and nuisance
parameter, but might be some function of those, for which H0 is unaffected. This
seems to happen more often in problems of type 2., where reduction of dimension
uses invariance arguments. The t-test provides an example of this phenomenon.

The similar tests constructed in 1. have the property that the size is α throughout
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the full null hypothesis Θ0 = (ψ0×Λ). Tests with this property are called unbiased.
(The precise definition of unbiased is that the power is nowhere less than the size,
which in particular means the size must be α throughout H0.) All similar tests are
unbiased, but there exist unbiased tests that are not similar, i.e. not constructed
from a conditional distribution that is free of the nuisance parameter. These tests
are not in fact useful for problems with nuisance parameters, but the requirement of
unbiasedness is also sometimes imposed in the problem of testing a simpleH0 against
a composite H1 when no UMP test exists. One example for real θ is H0 : θ = θ0 vs.
H1 : θ 6= θ0.

4. Examples
(a): Reduction by conditioning

1. Ratio of Poissons

If Y1 and Y2 are independent Poissons with mean λ and ψλ, then S = Y1 + Y2
has a Poisson λ+ λψ and Y1 given S has a distribution depending only on ψ,
so we are in setting 1.

2. Comparing two Binomials

If Y1 and Y2 are independent Binomials with probability of success p1 and
p2 respectively, as done in class, then S = Y1 + Y2 has a distribution which
depends on ψ and λ, and the conditional distribution of Y1 given S depends
only on ψ. Again we’re in situation 1.. The distribution of Y1 given S is

fY1|S(y1|s;ψ) = exp(ψy1)

(
n1

y1

)(
n2

y2

)
c(ψ, s),

where c(ψ, s) is a normalizing constant for the conditional density. The most
powerful test of H0 : ψ = ψ0 vs. H1 : ψ = ψ1 has critical region determined
by f1(y1|s;ψ1) > kf1(y1|s;ψ0). Since f1(y1|s;ψ) has monotone likelihood
ratio in y1 (for fixed s), this is equivalent to y1 > a, where a is determined
from Pr{Y1 > a|S = s;ψ0} = α.

3. Testing a gamma shape parameter

Suppose Y1, . . . , Yn are i.i.d. from the gamma density:

fY (y; β, µ) =
1

Γ(β)

β

µ
(
βy

µ
)β−1exp(−yβ/µ)

and it is desired to test H0 : β = β0, with µ a nuisance parameter. The
minimal sufficient statistic for (µ, β) is S = (

∑
log Yi,

∑
Yi) , as can be seen

from the form of the joint density for the sample:

fY1,...,Yn(y1, . . . , yn) = exp{(β−1)
∑

log yi−
β

µ

∑
yi−n log{Γ(β)}+n log

(
β

µ

)
}.
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The density of S is therefore

fS1,S2(s1, s2;µ, β) = exp{(β−1)s1−(β/µ)s2−n log{Γ(β)}+n log

(
β

µ

)
−d(s1, s2)},

where d is a fairly complicated function. We don’t have to know that function,
though, to verify that the conditional distribution of S1, given S2, depends only
on β, and further that the marginal distribution of S2 depends on µ and β. (In
fact, we know that the marginal distribution of S2 is Gamma(µ, nβ).) Further,
the conditional distribution of S1 has monotone likelihood ratio in s1, for fixed
s2, so we can get a UMP similar test for onesided alternatives.

4. Normal variance

The same type of structure obtains for testing H0 : σ2 = σ2
0, with an i.i.d.

sample from a N(µ, σ2) distribution.

All these examples are testing a canonical parameter or a difference of canon-
ical parameters in a full exponential model. I don’t think I know of any ex-
amples outside the exponential family, although there undoubtedly are some.
In all of the examples the statistic that is sufficient for λ, when ψ is fixed,
does not depend on the particular fixed value of ψ. In problems of testing
a ratio of canonical parameters in a full exponential model, the conditioning
statistic does depend on the particular fixed value of ψ. The argument still
goes through to give UMP similar tests, however. An example is testing the
ratio of two exponential means, with two i.i.d. samples.

(b): Reduction by marginalization

1. Normal mean

Let Y1, . . . , Yn be i.i.d N(µ, σ2) random variables, and assume that we want to
test the null hypothesis H0 : µ = 0 against the alternative H1 : µ > 0. Since we
know (Ȳ , S2) is minimal sufficient, and the density of Ȳ depends on µ and σ2,
whereas that of S2 depends only on σ2, it looks like we won’t be able to reduce
following pattern 1.. However, note that T = Ȳ /S is invariant with respect to
scale changes (Yi → cYi), and so are H0 and H1. That is, if we replaced each
observation by cYi, the new mean would be cµ, the new variance would be c2σ2,
and the new minimal sufficient statistic would be (cȲ , c2S2). The statistic T is
a maximal invariant for the group of scale transformations. Under the group
of scale transformations, H0 and H1 are unchanged (provided c > 0). If we
replace T by the equivalent maximal invariant T ′ =

√
n
√

(n − 1)T we can
easily derive its distribution. T ′ follows a noncentral t distribution, with n− 1
degrees of freedom and noncentrality parameter µ/σ. So letting ψ = µ/σ, and
λ = σ, we are in situation 2. above: T ′ is ancillary for σ, when ψ = µ/σ is
fixed, and tests constructed from the marginal distribution of T ′ are invariant.
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Since the noncentral t- distribution has monotone likelihood ratio for all ψ > 0,
the test that has rejection region {y; t′(y) > c} will be UMP invariant. The
constant c is determined by Pr(T ′ > c;µ = 0) = α, and since T ′ ∼ tn−1 when
µ = 0, this is the usual t-test.

If H1 is µ 6= 0, then the appropriate group of transformations is as above, with
c 6= 0. The maximal invariant turns out to be T 2, or equivalently |T |, and the
UMP invariant test is just the usual two-sided t-test.

Many normal theory examples can be handled by invariance arguments, as
can many multivariate normal theory examples. Tests about the mean of the
gamma can also be derived by invariance arguments. In fact, tests about the
mean of a normal or a gamma can also be derived by conditioning arguments,
but the details are tricky and the invariance argument is much simpler. The
normal and gamma distributions are the only ones for which methods 1. and
2. can both be applied. Invariance arguments are not available for discrete
problems, except in very special cases.
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