
Ancillary Statistics

In a parametric model f (y; θ) for a random variable
or vector Y, a statistic A = a(Y) is ancillary for θ if
the distribution of A does not depend on θ . As a very
simple example, if Y is a vector of independent, iden-
tically distributed random variables each with mean
θ , and the sample size is determined randomly, rather
than being fixed in advance, then A = number of
observations in Y is an ancillary statistic. This exam-
ple could be generalized to more complex structure
for the observations Y, and to examples in which the
sample size depends on some further parameters that
are unrelated to θ . Such models might well be appro-
priate for certain types of sequentially collected data
arising, for example, in clinical trials.

Fisher [5] introduced the concept of an ancillary
statistic, with particular emphasis on the usefulness of
an ancillary statistic in recovering information that
is lost by reduction of the sample to the maximum
likelihood estimate θ̂ , when the maximum likelihood
estimate is not minimal sufficient.

An illustrative, if somewhat artificial, example is
a sample (Y1, . . . , Yn), where now n is fixed, from
the uniform distribution on (θ, θ + 1). The largest
and smallest observations, (Y(1), Y(n)), say, form a
minimal sufficient statistic for θ . The maximum
likelihood estimator of θ is any value in the interval
(Y(n) − 1, Y(1)), and the range Y(n) − Y(1) is an
ancillary statistic. In this example, while the range
does not provide any information about the value of
θ that generated the data, it does provide information
on the precision of θ̂ . In a sample for which the range
is 1, θ̂ is exactly equal to θ , whereas a sample with
a range of 0 is the least informative about θ .

A theoretically important example discussed in
Fisher [5] is the location model (see Location–Scale
Family), in which Y = (Y1, . . . , Yn), and each Yi

follows the model f (y − θ), with f (·) known but
θ unknown. The vector of residuals A = (Y1 − Y ,

. . . , Yn − Y), where Y = n−1 ∑
Yi , has a distribu-

tion free of θ , as is intuitively obvious, since both
Yi and Y are centered at θ . The uniform example
discussed above is a special case of the location
model, and the range Y(n) − Y(1) is also an ancillary
statistic for the present example. In fact, the vector
B = (Y(2) − Y(1), . . . , Y(n) − Y(1)) is also ancillary, as
is C = (Y1 − θ̂ , . . . , Yn − θ̂ ), where θ̂ is the maxi-
mum likelihood estimate of θ . A maximal ancillary

provides the largest possible conditioning set, or the
largest possible reduction in dimension, and is analo-
gous to a minimal sufficient statistic. A, B, and C are
maximal ancillary statistics for the location model,
but the range is only a maximal ancillary in the loca-
tion uniform.

An important property of the location model is that
the exact conditional distribution of the maximum
likelihood estimator θ̂ , given the maximal ancillary
C, can be easily obtained simply by renormalizing
the likelihood function:

p(θ̂ |c; θ) = L(θ ; y)∫
L(θ ; y) dθ

, (1)

where L(θ ; y) = ∏
f (yi ; θ) is the likelihood function

for the sample y = (y1, . . . , yn), and the right-hand
side is to be interpreted as depending on θ̂ and c,
using the equations

∑
∂{log f (yi ; θ)}/∂θ |θ̂ = 0 and

c = y − θ̂ .
The location model example is readily generalized

to a linear regression model with nonnormal errors.
Suppose that, for i = 1, . . . , n, we have indepen-
dent observations from the model Yi = x′

iβ + σεi ,
where the distribution of εi is known. The vector of
standardized residuals (Yi − x′

i β̂)/σ̂ is ancillary for
θ = (β, σ ) and there is a formula similar to (1) for
the distribution of θ̂ , given the residuals.

It is possible, and has been argued, that Fisher’s
meaning of ancillarity included more than the require-
ment of a distribution free of θ : that it included a
notion of a physical mechanism for generating the
data in which some elements of this mechanism are
“clearly” not relevant for assessing the value of θ ,
but possibly relevant for assessing the accuracy of
the inference about θ . Thus, Kalbfleisch [7] makes a
distinction between an experimental and a mathemat-
ical ancillary statistic. Fraser [6] developed the notion
of a structural model as a physically generated exten-
sion of the location model. Efron & Hinkley [4] gave
particular attention to the role of an ancillary statistic
in estimating the variance of the maximum likelihood
estimator.

Two generalizations of the concept of ancillary
statistic have become important in recent work in
the theory of inference. The first is the notion of
approximate ancillarity, in which the distribution
of A is not required to be entirely free of θ ,
but free of θ to some order of approximation.
For example, we might require that the first few
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2 Ancillary Statistics

moments of A be constant (in θ), or that the
distribution of A be free of θ in a neighborhood
of the true value θ0, say. The definition used by
Barndorff-Nielsen & Cox [1] is that A is qth order
locally ancillary for θ near θ0 if f (a; θ0 + δ/

√
n) =

f (a; θ0) + O(n−q/2). Approximate ancillary statistics
are also discussed in McCullagh [9] and Reid [11].
The notion of an approximate ancillary statistic has
turned out to be rather important for the asymptotic
theory of statistical inference, because the location
family model result given in (1) can be generalized,
to give the result

p(θ̂ |a; θ)
.= c(θ, a)|j (θ̂)|1/2 L(θ ; y)

L(θ̂ ; y)
, (2)

where c is a normalizing constant, j (θ) = −∂2

log L(θ)/∂θ∂θ ′ is the observed Fisher information
function, a is an approximately ancillary statistic,
and in the right-hand side y is a function of θ̂, a.
This approximation, which is typically much more
accurate than the normal approximation to the distri-
bution of θ̂ , is known as Barndorff-Nielsen’s approxi-
mation, or the p∗ approximation, and is reviewed
in Reid [10] and considered in detail in Barndorff-
Nielsen & Cox [1]. In (2) the likelihood function is
normalized by a slightly more elaborate looking for-
mula than the simple integral in (1), but the principle
of renormalizing the likelihood function has still been
applied. A distribution function approximation anal-
ogous to (2) is also available: see Barndorff-Nielsen
& Cox [1] and Reid [11].

Suppose that the parameter θ is partitioned as
θ = (ψ, λ), where ψ is the parameter of interest
and λ is a nuisance parameter. For example, ψ

might parameterize a regression model for survival
time as a function of several covariates, and λ might
parameterize the baseline hazard function. If we
can partition the minimal sufficient statistic for θ as
(S, T), such that

f (s, t; θ) = f (s|t; ψ)f (t; λ), (3)

then T is an ancillary statistic for ψ in the sense of
the above definition. Factorizations of the form given
in (3) are the exception, though, and we more often
have a factorization of the type

f (s, t; θ) = f (s|t; ψ)f (t; ψ, λ) (4)

or
f (s, t; θ) = f (s|t; ψ, λ)f (t; λ). (5)

An example of (4) is the two-by-two table, with
ψ the log odds ratio. The conditional distribution of
a single cell entry, given the row and column totals,
depends only on ψ : this is the basis for Fisher’s exact
test (see Conditionality Principle). Although it is
sometimes claimed that the row total is an ancillary
statistic for the parameter of interest, this is in fact
not the case, at least according to the definition of
ancillarity discussed here. Some more general notions
of ancillarity have been proposed in the literature, but
have not proved to be widely useful in theoretical
developments. Further discussion of ancillarity and
conditional inference in the presence of nuisance
parameters can be found in Liang & Zeger [8] and
Reid [10].

Ancillary statistics are defined for parametric mod-
els, so would not be defined, for example, in Cox’s
proportional hazards regression model (see Cox
Regression Model). Cox [2] did originally argue,
though, that the full likelihood function could be par-
titioned into a factor that provided information on the
regression parameters β and a factor that provided no
information about β in the absence of knowledge of
the baseline hazard: the situation is analogous to (4)
but, as was pointed out by several discussants of [2],
the likelihood factor that is used in the analysis is not
in fact the conditional likelihood for any observable
random variables. Cox [3] developed the notion of
partial likelihood to justify the now standard esti-
mates of β.
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