
Today
I HW 3 due April 1
I Project due April 15
I non-specific effects Cox & Donelly, Ch. 7.2

I generalized linear mixed models and GEEs
I In the News: Election Polling UK

I Project Guidelines
I report: 3-5 pages: non-technical, no code – Intro, source of

data, problem of interest, conclusions, a few tables, a few
plots

I statistical appendix: main statistical methods used,
summary of results, code excerpts permitted

I further plots and tables as needed
I executable code
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Recap: random and mixed effects models
I random effects are useful in a variety of models
I randomized block designs, Latin squares, etc. blocks as

random effects

I split plot designs: two levels of randomization ELM §8.5

I nested designs: students within classes within schools;
technical replicates within samples within laboratories; ELM
§8.6, MASS §10.2

I longitudinal data: PSID, rat growth ELM §9.1, SM Ex.9.18

I multi-level models: combination of crossed (fixed) and
nested (random) effects ELM §8.8, 9.3
– in §9.3, two responses are considered (English and math
scores), but a single response is used (English score) with math
score as a covariate

I repeated measures: acuity of vision ELM §9.2
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Non-specific effects C&D §7.2

I example: a clinical trial involves several or many centres
I an agricultural field trial repeated at a number of different

farms, and over a number of different growing seasons
I a sociological study repeated in broadly similar form in a

number of countries
I laboratory study uses different sets of analytical apparatus,

imperfectly calibrated
I such factors are non-specific
I how do we account for them

I on an appropriate scale, a parameter represents a shift in
outcome

I more complicated: the primary contrasts of concern vary
across centres

I i.e. treatment-center interaction
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... non-specific effects
I suppose no treatment-center interaction
I example:

logit{pr(Yci = 1)} = αc + xT
ciβ

I should αc be ?fixed? or ?random?
I effective use of a random-effects representation will require

estimation of the variance component corresponding to the
centre effects

I even under the most favourable conditions the precision
achieved in that estimate will be at best that from
estimating a single variance from a sample of a size equal
to the number of centres

I very fragile unless there are at least, say, 10 centres and
preferably considerably more
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... non-specific effects
I if centres are chosen by an effectively random procedure

from a large population of candidates, ... the
random-effects representation has an attractive tangible
interpretation. This would not apply, for example, to the
countries of the EU in a social survey

I some general considerations in linear mixed models:
I in balanced factorial designs, the analysis of treatment

means is unchanged
I in other cases, estimated effects will typically be ‘shrunk’,

and precision improved
I representation of the nonspecific effects as random effects

involves independence assumptions which certainly need
consideration and may need some empirical check
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... non-specific effects
I if estimates of effect of important explanatory variables are

essentially the same whether nonspecific effects are
ignored, or are treated as fixed constants, then random
effects model will be unlikely to give a different result

I it is important in applications to understand the
circumstances under which different methods give similar
or different conclusions

I in particular, if a more elaborate method gives an apparent
improvement in precision, what are the assumptions on
which that improvement is based, and are they
reasonable?
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... non-specific effects
I if there is an interaction between an explanatory variable

[e.g. treatment] and a nonspecific variable
I i.e. the effects of the explanatory variable change with

different levels of the nonspecific factor
I the first step should be to explain this interaction, for

example by transforming the scale on which the response
variable is measure or by introducing a new explanatory
variable

I example: two medical treatments compared at a number of
centres show different treatment effects, as measured by
an ratio of event rates

I possible explanation: the difference of the event rates might
be stable across centres

I possible explanation: the ratio depends on some
characteristic of the patient population, e.g. socio-economic
status

I an important special application of random-effect models
for interactions is in connection with overviews, that is,
assembling of information from different studies of
essentially the same effect
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Generalized linear mixed models ELM §10.1

I GLM:

f (yi | β, φ, γ) = exp{yiθi − b(θi)

φai
+ c(yi ;φai)}

b′(θi) = µi

I random effects

g(µi) = xT
i β + zT

i γ, γ ∼ N(0,Dψ)

I likelihood

L(β, φ, ψ; y) =
n∏

i=1

∫
f (yi | β, γ, φ)ϕ(γ; 0,Dψ)dγ

I ψ are parameters in the covariance matrix
φ is the dispersion parameter for GLM
ϕ(x) ∝ exp(−x2/2)
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... generalized linear mixed models
I likelihood

L(β, φ, ψ; y) =
n∏

i=1

∫
f (yi | β, γ, φ)φ(γ; 0,Dψ)dγ

I doesn’t simplify unless f (yi | γ) is normal
I solutions proposed include

I numerical integration, e.g. by quadrature
I integration by MCMC
I Laplace approximation to the integral – penalized

quasi-likelihood

MASS library and book (§10.4):
glmmNQ, GLMMGibbs, glmmPQL, all in library(MASS)

glmer in library(lme4)
I several observations per subject: g{E(yij | γi)} = xT

ij β + zT
ij γi ,

L(β; y) =
∏n

i=1

∫ ∏mi
j=1 f (yij ; γi)φ(γi ; 0,Dψ)dγ

STA 2201: Applied Statistics II March 11, 2015 9/25



Example: Balance experiment Faraway, 10.1

I effects of surface and vision on balance;
2 levels of surface; 3 levels of vision

I surface: normal or foam
I vision: normal, eyes closed, domed
I 20 males and 20 females tested for balance, twice at each

of 6 combinations of treatments
I auxiliary variables age, height, weight

Steele 1998, OzDASL

I response measured on a 4 point scale; converted by
Faraway to binary (stable/not stable)

I analysed using linear models at OzDASL
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... balance
> balance <- glmer(stable ˜ Sex + Age + Height + Weight + Surface + Vision +
+ (1|Subject), family = binomial, data = ctsib)

# Subject effect is random

> summary(balance)
Generalized linear mixed model fit by maximum likelihood [’glmerMod’]

...

Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 8.197 2.863

Number of obs: 480, groups: Subject, 40

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.920750 13.358013 0.743 0.458
Sexmale 2.825305 1.762383 1.603 0.109
Age -0.003644 0.080928 -0.045 0.964
Height -0.151012 0.092174 -1.638 0.101
Weight 0.058927 0.061958 0.951 0.342
Surfacenorm 7.524423 0.888827 8.466 < 2e-16 ***
Visiondome 0.683931 0.530654 1.289 0.197
Visionopen 6.321098 0.839469 7.530 5.08e-14 ***
---

logit(pij ) = µ+ genderi + agei + heighti + weighti + surfaceij + visionij + γi
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... balance
- if we allow γi to be a fixed effect for each subject,
then model fit fails why?
> gfs <- glm(stable ˜ Sex + Age + Height + Weight + Surface + Vision
+ + factor(Subject),
+ family = binomial,
+ data = ctsib)
Warning messages:
1: glm.fit: algorithm did not converge
2: glm.fit: fitted probabilities numerically 0 or 1 occurred
> summary(gfs)

Call:
glm(formula = stable ˜ Sex + Age + Height + Weight + Surface +

Vision + factor(Subject), family = binomial, data = ctsib)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.62183 -0.08595 -0.00170 0.00000 3.11251

Coefficients: (2 not defined because of singularities)
Estimate Std. Error z value Pr(>|z|)

(Intercept) 1.408e+14 7.907e+14 0.178 0.859
Sexmale 1.130e+13 5.662e+13 0.200 0.842
Age -3.723e+12 1.772e+13 -0.210 0.834
Height -2.139e+12 9.517e+12 -0.225 0.822
Weight 4.491e+12 1.829e+13 0.246 0.806
Surfacenorm 9.550e+00 1.435e+00 6.654 2.86e-11 ***
Visiondome 8.211e-01 5.819e-01 1.411 0.158
Visionopen 8.241e+00 1.370e+00 6.016 1.79e-09 ***
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... balance: random effects models

> library(MASS)

> balance2 <- glmmPQL(stable ˜ Sex + Age + Height + Weight + Surface + Vision,
+ random = ˜1 | Subject, family = binomial, data = ctsib)

> summary(balance2)

Random effects:
Formula: ˜1 | Subject

(Intercept) Residual
StdDev: 3.060712 0.5906232

Variance function:
Structure: fixed weights
Formula: ˜invwt

Fixed effects: stable ˜ Sex + Age + Height + Weight + Surface + Vision
Value Std.Error DF t-value p-value

(Intercept) 15.571494 13.498304 437 1.153589 0.2493
Sexmale 3.355340 1.752614 35 1.914478 0.0638
Age -0.006638 0.081959 35 -0.080992 0.9359
Height -0.190819 0.092023 35 -2.073601 0.0455
Weight 0.069467 0.062857 35 1.105155 0.2766
Surfacenorm 7.724078 0.573578 437 13.466492 0.0000
Visiondome 0.726464 0.325933 437 2.228873 0.0263
Visionopen 6.485257 0.543980 437 11.921876 0.0000
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... balance

> balance4 <- glmer(stable ˜ Sex + Age + Height + Weight + Surface + Vision +
+ (1|Subject), family = binomial, data = ctsib, nAGQ = 9)

> summary(balance4)

Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 7.8 2.793

Number of obs: 480, groups: Subject, 40

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 13.551847 13.067369 1.037 0.2997
Sexmale 3.109307 1.724797 1.803 0.0714 .
Age -0.001804 0.079161 -0.023 0.9818
Height -0.175061 0.090239 -1.940 0.0524 .
Weight 0.065742 0.060606 1.085 0.2780
Surfacenorm 7.428046 0.872416 8.514 < 2e-16 ***
Visiondome 0.682509 0.527836 1.293 0.1960
Visionopen 6.210825 0.822012 7.556 4.17e-14 ***

See Mar11.R for more details and to fit other versions
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... balance
glmer(Laplace) glmer(Quad. 5) glmer(Quad. 9) glmmPQL

σ̃γ 2.86 2.72 2.79 3.07

Surface 7.5 7.3 7.4 7.7
norm (1.16) (1.05) (1.09) (0.57)

Height −0.15 −0.19 −0.17 −0.19
(0.09) (0.09) (0.09) (0.09)

– note: no analogue of REML for generalized linear mixed
models

References: MASS Book §10.4; online resource for R and
mixed models
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Generalized Estimating Equations ELM §10.2

I GLM’s have E(yi) = µi ; var(yi) = φV (µi)

I ML equation of the form Σn
i=1

(yi−µi )xi
g′(µi )V (µi )

= 0

I extend to vector yi = (yi1, . . . , yini ) Liang & Zeger, 1986
I var(yi) = Vi(β, α) is now ni × ni matrix
I estimating equation for β:

m∑
i=1

(
∂µi

∂β

)T

Vi(β;α)−1(yi − µi) = 0

I LZ suggest using a working covariance matrix e.g. AR(1)
I estimates of β are consistent, even if covariance is

mis-specified

I correlation between measurements on the same subject
are modelled/assumed

I not generated from random effects
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... GEE
glmer(Quad. 5) glmmPQL GEE

σ̃γ 2.72 3.07

Surface 7.5 7.7 3.92
norm (1.05) (0.57) (0.57)

Height −0.19 −0.19 −0.10
(0.09) (0.09) (0.04)

β has a different interpretation under GEE: it is the marginal
effect on the population average

by assumption: E(yi) = µi(β), Var(yi) = V (β, α), y is a vector

in the GLMM model β is the conditional effect on an individual
subject’s response yij Diggle, Liang & Zeger, Ch. 7
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Marginal and conditional models Diggle et al. Ch. 7

I Marginal model for binary data
I E(yij ) = µij , logit(µij ) = x T

ijβ = β0 + β1xij , for example

I var(yij ) = φV (µij ) = µij (1− µij )

I corr(yij , yik ) = ρ(µij , µik , α) = α

I exp(β0) is the ratio of Pr(1) to Pr(0) when xij = 0

I exp(β1) is the increase in odds associated with an increase
in x

I Random effects model for binary data
I logit{Pr(yij} = 1 | γi ) = (β∗

0 + γi ) + β∗
1 xij

I baseline (x = 0) ratio: exp(β∗
0 + Ui ), for subject i

I increase with x : exp(β∗
1 )
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Epilepsy data ELM §10.2

I 59 patients, 5 measurements per patient, over time
I first measurement: number of seizures in an eight-week

period
I next four measurements: number of seizures in

consecutive two-week periods
I 31 patients randomized to drub Progabide; 28 to placebo

I see Mar11.R for R code as in ELM

I

baseline experiment
placebo 3.85 4.30

treatment 3.96 3.98
I is the drug beneficial?
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... epilepsy data
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estimate robust s.e. robust z
(Intercept) 1.320 0.161

period(exposure) 0.143 0.108 1.33
treatment(drug) −0.079 0.197 −0.403

interaction −0.377 0.168 −2.242
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... epilepsy
estimate robust s.e. robust z

(Intercept) 1.320 0.161
period(exposure) 0.143 0.108 1.33
treatment(drug) −0.079 0.197 −0.403

interaction −0.377 0.168 −2.242

Interaction between exposure period and treatment is the effect of the drug
why?

marginally significant
with patient 49 included, becomes insignificant Diggle et al. (2002)

Estimated Scale Parameter: 10.687: automatically incorporates
over-dispersion

Working Correlation
[,1] [,2] [,3] [,4] [,5]

[1,] 1.0000000 0.8102249 0.6564644 0.5318838 0.4309455
[2,] 0.8102249 1.0000000 0.8102249 0.6564644 0.5318838
[3,] 0.6564644 0.8102249 1.0000000 0.8102249 0.6564644
[4,] 0.5318838 0.6564644 0.8102249 1.0000000 0.8102249
[5,] 0.4309455 0.5318838 0.6564644 0.8102249 1.0000000
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Variance-stabilizing transformations
I suppose E(y) = µ, var(y) ∝ V (µ)

I is there a transformation of y for which variance is
constant?

I g(y)
.

= g(µ) + (y − µ)g′(µ)

I E{g(y)} .= g(µ), var{g(y)} .= cV (µ){g′(µ)}2

I choose g(µ) ∝
∫

1
V 1/2(µ)

dµ variance-stabliziing transf.

I example: Poisson V (µ) = µ, g(µ) =
∫
µ−1/2dµ ∝ µ1/2

I example: exponential
V (µ) = µ2, g(µ) =

∫
µ−1dµ ∝ log(µ)
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Box-Cox transformation
I an older approach to regression uses variance-stabilizing

transformations
I followed by linear model fitting
I instead of GLM

I Box & Cox (1964) formalized this approach with the model

y (λ) = xTβ + ε,

λ is a parameter to be estimated

I

y (λ) =

{
(yλ − 1)/λ, λ 6= 0

log(y), λ = 0

I λ to be estimated by maximum likelihood; then fixed for
linear regression

I usually GLM approach preferred in most settings
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In the News
Significance website: review of methods of UK polling firms
Election Forecast UK: aggregates results of all polls
FiveThirtyEight: planning to forecast the UK election

SRS: sample y1, . . . , yn. Estimate population mean by
ȳ = Σyi/n and population total by Nȳ

stratified RS: yhj ,h = 1, . . . ,H; j = 1, . . . ,nh. Estimation
population total by ΣhΣj∈Sh (Nh/nh)yjj – each unit in stratum h
represents Nh/nh of the proportion in the population in stratum
h

both estimates can be expressed as
∑

wiyi , where wi = 1/πi
and πi is the probability of selection

complex sample surveys weight each sampled unit to ensure
that the sample has the same age/sex/SES/... as the full
population
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