
Today
I HW 1: due February 4, 11.59 pm.

I Regression with count data

I Forestry experiment and dose-response modelling

I In the News: “High water mark: the rise in sea levels may
be accelerating” Economist, Jan 17

I Cancer bad luck: Data analysis here

I “Prolonged sitting raises the risk of disease”, Globe & Mail,
Jan. 21 online
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http://www.utstat.toronto.edu/reid/2201S15.html
http://www.economist.com/news/science-and-technology/21639442-rise-sea-levels-may-be-accelerating-higher-water-mark
http://erlichya.tumblr.com/post/108802484899/cancer-bad-luck-the-first-law-of-holes?utm_source=dlvr.it&utm_medium=twitter
http://globe2go.newspaperdirect.com/epaper/viewer.aspx?noredirect=true


Responses are counts ELM, Ch. 3

I responses take values 0,1,2, . . .
I simplest model is Y ∼ Poisson(µ)
I

f (y ;µ) =
e−µµy

y !
, y = 0,1,2, . . . ; E(Y ) = var(Y ) = µ

I can be used in preference to Binomial, with large n and
small p

I when events occur at exponentially distributed times, the
number of events in a give time period follows a Poisson
distributions

I if events occur in a Poisson process, in time or in space,
the number of events in a given time interval or spatial area
follows a Poisson distribution

I examples: counts of cancer cases in a geographical area;
calls arriving at a service centre, occurrence of
earthquakes, ...
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Poisson regression
I yi ∼ Poisson(µi), i = 1, . . . ,n
I log(µi) = xT

i β: log-link
I

`(β) =
n∑

i=1

{yixT
i β − exp(xT

i β)}

I if count is number falling into some level of a given
category then multinomial or binomial is appropriate

I Y1 ∼ Poisson(µ1),Y2 ∼ Poisson(µ2) : independent

I Y1 + Y2 ∼ Poisson(µ1 + µ2)
I Y1|Y1 + Y2 ∼ Binomial{y1 + y2, µ1/(µ1 + µ2)}

I maximum likelihood estimator:∑
(yi − exT

i β̂)xT
i = 0

I ∑
yixT

i =
∑

µi(β̂)xT
i
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... Poisson regression
I saturated model yi ∼ Poisson(µi)

I residual deviance

2{`(µ̃; y)−`(µ̂; y)} =
∑
{yi log yi−yi−yi logµi(β̂) +µi(β̂)}

I as with binomial, can be used as a test of model adequacy

I as with binomial, can be approximated by Pearson X 2:

X 2 =
n∑

i=1

{yi − µi(β̂)}2

µi(β̂)
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Example ELM p.56ff

> library(faraway); data(gala)
> head(gala)

Species Endemics Area Elevation Nearest Scruz Adjacent
Baltra 58 23 25.09 346 0.6 0.6 1.84
Bartolome 31 21 1.24 109 0.6 26.3 572.33
Caldwell 3 3 0.21 114 2.8 58.7 0.78
Champion 25 9 0.10 46 1.9 47.4 0.18
Coamano 2 1 0.05 77 1.9 1.9 903.82
Daphne.Major 18 11 0.34 119 8.0 8.0 1.84
> ?gala
> dim(gala)
[1] 30 7
> gala <- gala[,-2] # remove variable "Endemics"

Species Number and Endemism: The
Galápagos Archipelago Revisited
Author(s): Michael P. Johnson and
Peter H. Raven Source: Science, New
Series, Vol. 179, No. 4076 (Mar. 2,
1973), pp. 893-895
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... example see ELM for fit of linear model for Species and
√
Species

> modp <- glm(Species ˜ ., data = gala, family = poisson)
> summary(modp)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.155e+00 5.175e-02 60.963 < 2e-16 ***
Area -5.799e-04 2.627e-05 -22.074 < 2e-16 ***
Elevation 3.541e-03 8.741e-05 40.507 < 2e-16 ***
Nearest 8.826e-03 1.821e-03 4.846 1.26e-06 ***
Scruz -5.709e-03 6.256e-04 -9.126 < 2e-16 ***
Adjacent -6.630e-04 2.933e-05 -22.608 < 2e-16 ***
---

Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 716.85 on 24 degrees of freedom
AIC: 889.68

> modp2 <- glm(Species ˜ ., data = gala, family = quasipoisson)
> summary(modp2)

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) 3.1548079 0.2915901 10.819 1.03e-10 ***
Area -0.0005799 0.0001480 -3.918 0.000649 ***
Elevation 0.0035406 0.0004925 7.189 1.98e-07 ***
Nearest 0.0088256 0.0102622 0.860 0.398292
Scruz -0.0057094 0.0035251 -1.620 0.118380
Adjacent -0.0006630 0.0001653 -4.012 0.000511 ***
---

(Dispersion parameter for quasipoisson family taken to be 31.74921)

STA 2201: Applied Statistics II January 28, 2015 6/22



... example
– see p.61 where dispersion computed directly from pearson
residuals
> sum(residuals(modp,"pearson")ˆ2/24)
[1] 31.74914

– note that using quasi-Poisson gives p-values based on
t-distribution

– this is by analogy with normal theory linear regression

– could also drop terms and compare scaled deviances to F
distribution ELM p.61

– another way to handle over dispersion is to use negative
binomial model ELM §3.3

> library(MASS)
> modn <- glm.nb(Species ˜ ., data = gala)
> summary(modn)

– gives results broadly consistent with quasi-Poisson
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Poisson process SM Ch. 6.5

I observe process {N(t), t ∈ (0, t0]} which counts events; i.e.
N(t) is the number of events occurring between time 0 and
time t

I require:
1. Pr[N(t + h)− N(t) = 1] = λ(t)h + o(h)
2. Pr[N(t + h)− N(t) = 0] = 1− λ(t)h + o(h)
3. events in disjoint subsets of (0, t0] are independent

I then {N(t), t ∈ (0, t0]} is a (non-homogeneous) Poisson
process with rate λ(t)

I can show that

Pr{N(t0) = n} =
{Λ(t0)}n

n!
exp{−Λ(t0)},

I Λ(t0) =
∫ t0

0 λ(t)dt
I if λ(t) = λ, then Λ(t) = λt , and the number of points in

(0, t0] is Poisson with mean λt0
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Rate models ELM Ch. 3.2

I number of events in (0, t0) follows a Poisson with mean λt0
I i.e. µ = λt0, log(µ) = log(λ) + log(t0)︸ ︷︷ ︸

fixed
> data(dicentric)
> head(dicentric)

cells ca doseamt doserate
1 478 25 1 0.10
2 1907 102 1 0.25
3 2258 149 1 0.50
4 2329 160 1 1.00
5 1238 75 1 1.50
6 1491 100 1 2.00
> ?dicentric

> modr <- glm(ca ˜ log(doserate)*factor(doseamt) + offset(log(cells)),
+ family = poisson, data = dicentric)
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) -2.74671 0.03426 -80.165 < 2e-16 ***
log(doserate) 0.07178 0.03518 2.041 0.041299 *
factor(doseamt)2.5 1.62542 0.04946 32.863 < 2e-16 ***
factor(doseamt)5 2.76109 0.04349 63.491 < 2e-16 ***
log(doserate):factor(doseamt)2.5 0.16122 0.04830 3.338 0.000844 ***
log(doserate):factor(doseamt)5 0.19350 0.04243 4.561 5.1e-06 ***
---
(Dispersion parameter for poisson family taken to be 1)

Null deviance: 4753.00 on 26 degrees of freedom
Residual deviance: 21.75 on 21 degrees of freedom
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Log-linear models SM §10.5.1

> data(soccer)
> head(soccer)

month day year team1 team2 score1 score2
1 Aug 19 2000 Charlton ManchesterC 4 0
2 Aug 19 2000 Chelsea WestHam 4 2
3 Aug 19 2000 Coventry Middlesbr 1 3
4 Aug 19 2000 Derby Southampton 2 2
5 Aug 19 2000 Leeds Everton 2 0
6 Aug 19 2000 Leicester AstonVilla 0 0
> ?soccer
> dim(soccer)
[1] 380 7
> with(soccer, levels(team1))
[1] "Arsenal" "AstonVilla" "Bradford" "Charlton" "Chelsea" "Coventry"
[7] "Derby" "Everton" "Ipswich" "Leeds" "Leicester" "Liverpool"

[13] "ManchesterC" "ManchesterU" "Middlesbr" "Newcastle" "Southampton" "Sunderland"
[19] "Tottenham" "WestHam"

yh
ij ∼ Poisson(µh

ij ), ya
ij ∼ Poisson(µa

ij ) score home/away

µh
ij = exp(∆ + αi + βj), µa

ij = exp(αj − βi)

αi : offensive strength βj : defensive strength ∆: home advantage

STA 2201: Applied Statistics II January 28, 2015 10/22



... soccer
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... soccer
I yh

ij ∼ Poisson(µh
ij ), ya

ij ∼ Poisson(µa
ij ) score home/away

I µh
ij = exp(∆ + αi + βj), µa

ij = exp(αj − βi)

I A different analysis: home score, given total score:
yh

ij | y
h
ij + ya

ij

I Binomial with

pij =
µh

ij

µh
ij + µa

ij
=

exp{∆ + (

δi︷ ︸︸ ︷
αi + βi)− (αj + βj)}

1 + exp{∆ + (αi + βi)− (αj + βj)}

I Games tied at 0 contribute no information
I δi is the ‘overall strength’ of team i – can no longer

distinguish defensive and offensive
I Analysis based on logistic regression
I R code?
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Some data sources
I Iowa State University Stats Dept, Graphics group, has links

to the Recovery Act spending
I Kaggle has various competition data sets
I The OECD ran a PISA test visualization contest; the Iowa

State Group has some information about it as well.
I ICPSR The Inter-University Consortium for Political and

Social Research provides data by topic, geography, etc.,
including international data

I Canada’s Open Government website has an open data
portal

I Flowing Data has a handful of haphazard data sets
I World Mapper has links to several data sources
I This ASA site has links to several data sources about 3/4

of the way down the page
I for sports fans
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http://streaming.stat.iastate.edu/~dicook/recovery/analysts.html
http://streaming.stat.iastate.edu/~dicook/recovery/analysts.html
http://kaggle.com
http://www.oecd.org/pisa/pisaproducts/datavisualizationcontest.htm
https://www.icpsr.umich.edu/icpsrweb/ICPSR/index.jsp
http://open.canada.ca/en
http://flowingdata.com/category/statistics/data-sources/
http://www.worldmapper.org/data_sources.html
http://www.amstat.org/education/usefulsitesforteachers.cfm
http://www.myscores.ca


Dose-response curves

The attached dataset file contains 4 variables: Response:
Biomass Explanatory: Dosage(0,1,2,5,10,15,20), Seedling
Species(Category), Ash Boiler Type(Category)
The goal of the experiment is to come up with a dose
response curve for each seedling species. Since Ash Boiler
Type was shown to be non-significant in the regression
model, it was neglected.
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meantrees <-
ddply(trees,.(Seedling.species,
Ash.boiler.type, Ash.dosage),summarize,
biom = sum(Biomass..g.))

xyplot(biom ∼Ash.dosage |

Seedling.species, data = meantrees)
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meantrees2 <-
ddply(trees,.(Seedling.species,
Ash.dosage),summarize, biom =
mean(Biomass..g.))

xyplot(biom ∼Ash.dosage |

Seedling.species, data = meantrees2)
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qplot(Ash.dosage,

Biomass..g., data = trees,

facets = Seedling.species

∼., color = Ash.boiler.type)
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.Last.value +

geom smooth(method = "lm",

formula = y ∼ poly(x,2), se

= F)
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linear models

# straight lines for each species, all with same slope:

trees.lm <- lm(formula = Biomass..g. ˜ Ash.dosage + Seedling.species, data = trees) #

# orthogonal polynomials as in class

trees.lm2 <- lm(formula = Biomass..g. ˜ as.ordered(Ash.dosage) + Seedling.species,
data = trees)

# ordinary quadratics (no indication that any higher orders are needed

trees.lm3 <- lm(formula = Biomass..g. ˜ Ash.dosage + I(Ash.dosageˆ2) + Seedling.species,
data = trees)

# this allows a different slope for each species

trees.lm4 <- lm(formula = Biomass..g. ˜ Ash.dosage * Seedling.species, data = trees)

# and a different quadratic for each species

trees.lm5 <- lm(formula = Biomass..g. ˜ poly(Ash.dosage, 2) * Seedling.species,
data = trees)
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vartrees <-
ddply(trees,.(Seedling.species,
Ash.boiler.type,
Ash.dosage),summarize, biomv
= var(Biomass..g.))

qplot(Ash.dosage,biomv,data

= vartrees,

color=Seedling.species)
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