Today

- HW 1: due February 4, 11.59 pm.
- Regression with count data
- Forestry experiment and dose-response modelling
- In the News: "High water mark: the rise in sea levels may be accelerating" Economist, Jan 17
- Cancer bad luck: Data analysis here
- "Prolonged sitting raises the risk of disease", Globe & Mail, Jan. 21 online

Responses are counts

ELM, Ch. 3

- responses take values 0, 1, 2, ...
- ▶ simplest model is Y ~ Poisson(µ)

$$f(y; \mu) = \frac{e^{-\mu}\mu^y}{y!}, \quad y = 0, 1, 2, \dots; E(Y) = var(Y) = \mu$$

- can be used in preference to Binomial, with large n and small p
- when events occur at exponentially distributed times, the number of events in a give time period follows a Poisson distributions
- if events occur in a Poisson process, in time or in space, the number of events in a given time interval or spatial area follows a Poisson distribution
- examples: counts of cancer cases in a geographical area; calls arriving at a service centre, occurrence of earthquakes, ...

Poisson regression

- $y_i \sim \text{Poisson}(\mu_i), \quad i = 1, \dots, n$
- $\log(\mu_i) = \mathbf{x}_i^{\mathrm{T}}\beta$: log-link

$$\ell(\beta) = \sum_{i=1}^{n} \{ y_i x_i^{\mathrm{T}} \beta - \exp(x_i^{\mathrm{T}} \beta) \}$$

- if count is number falling into some level of a given category then multinomial or binomial is appropriate
- $Y_1 \sim \text{Poisson}(\mu_1), Y_2 \sim \text{Poisson}(\mu_2)$: independent

•
$$Y_1 + Y_2 \sim \text{Poisson}(\mu_1 + \mu_2)$$

• $Y_1 | Y_1 + Y_2 \sim \text{Binomial} \{ y_1 + y_2, \mu_1 / (\mu_1 + \mu_2) \}$

maximum likelihood estimator:

$$\sum (y_i - e^{x_i^{\mathrm{T}}\hat{\beta}})x_i^{\mathrm{T}} = 0$$

$$\sum \mathbf{y}_i \mathbf{x}_i^{\mathrm{T}} = \sum \mu_i(\hat{\beta}) \mathbf{x}_i^{\mathrm{T}}$$

... Poisson regression

- saturated model $y_i \sim \text{Poisson}(\mu_i)$
- residual deviance

$$2\{\ell(\tilde{\mu}; \mathbf{y}) - \ell(\hat{\mu}; \mathbf{y})\} = \sum\{\mathbf{y}_i \log \mathbf{y}_i - \mathbf{y}_i - \mathbf{y}_i \log \mu_i(\hat{\beta}) + \mu_i(\hat{\beta})\}$$

- as with binomial, can be used as a test of model adequacy
- ▶ as with binomial, can be approximated by Pearson X²:

$$X^{2} = \sum_{i=1}^{n} \frac{\{y_{i} - \mu_{i}(\hat{\beta})\}^{2}}{\mu_{i}(\hat{\beta})}$$

Example

ELM p.56ff

> library(faraw	ay); data	a(gala)
-----------------	-----------	---------

> head(gala)

	Species	Endemics	Area	Elevation	Nearest	Scruz	Adjacent	
Baltra	58	23	25.09	346	0.6	0.6	1.84	
Bartolome	31	21	1.24	109	0.6	26.3	572.33	
Caldwell	3	3	0.21	114	2.8	58.7	0.78	
Champion	25	9	0.10	46	1.9	47.4	0.18	
Coamano	2	1	0.05	77	1.9	1.9	903.82	
Daphne.Major	18	11	0.34	119	8.0	8.0	1.84	
> ?gala								
> dim(gala)								
[1] 30 7								
> gala <- gala[,-2] # remove variable "Endemics"								

	Observed species			Elaur	Distanc	Area of	
Island	Total S	Endem- ics	Area As (km²)	tion E (m)	From nearest island D ₁	From From nearest Santa island Cruz D_1 D_2	
Baltra	58	23	25.09		0.6	0.6	1.84
Bartolomé	31	21	1.24	109	0.6	26.3	572.33
Caldwell	3	3	0.21	114	2.8	58.7	0.78
Champion	25	9	0.10	46	1.9	47.4	0.18
Coamaño	2	1	0.05		1.9	1.9	903.82
Daphne Major	18	11	0.34		8.0	8.0	1.84
Darwin	10	7	2.33	168	34.1	290.2	2.85
Eden	8	4	0.03		0.4	0.4	17.95
Enderby	2	2	0.18	112	2.6	50.2	0.10
Española	97	26	58.27	198	1.1	88.3	0.57
Fernandina	93	35	634.49	1494	4.3	95.3	4669.32
Gardner*	58	17	0.57	49	1.1	93.1	58.27
Gardner?	5	4	0.78	227	4.6	62.2	0.21
Genovesa	40	19	17.35	76	47.4	92.2	129.49
Isabela	347	89	4669.32	1707	0.7	28.1	634.49
Marchena	51	23	129.49	343	29.1	85.9	59.56
Onslow	2	2	0.01	25	3.3	45.9	0.10
Pinta	104	37	59,56	777	29.1	119.6	129.49
Pinzon	108	33	17.95	458	10.7	10.7	0.03
Las Plazas	12	9	0.23		0.5	0.6	25.09
Rabida	70	30	4.89	367	4.4	24.4	572.33
San Cristóbal	280	65	551.62	716	45.2	66.6	0.57
San Salvador	237	81	572.33	906	0.2	19.8	4.89
Santa Cruz	444	95	903.82	864	0.6	0.0	0.52
Santa Fé	62	28	24.08	259	16.5	16.5	0.52
Santa Maria	285	73	170.92	640	2.6	49.2	0.10
Seymour	44	16	1.84		0.6	9.6	25.09
Tortuga	16	8	1.24	186	6.8	50.9	17.95
Wolf	21	12	2.85	253	34.1	254.7	2.33

Species Number and Endemism: The Galápagos Archipelago Revisited Author(s): Michael P. Johnson and Peter H. Raven Source: Science, New Series, Vol. 179, No. 4076 (Mar. 2, 1973), pp. 893-895

... example

see ELM for fit of linear model for Species and $\sqrt{Species}$

```
> modp <- glm(Species ~ ., data = gala, family = poisson)</pre>
> summary (modp)
Coefficients:
             Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.155e+00 5.175e-02 60.963 < 2e-16 ***
        -5.799e-04 2.627e-05 -22.074 < 2e-16 ***
Area
Elevation 3.541e-03 8.741e-05 40.507 < 2e-16 ***
Nearest 8.826e-03 1.821e-03 4.846 1.26e-06 ***
Scruz -5.709e-03 6.256e-04 -9.126 < 2e-16 ***
Adjacent -6.630e-04 2.933e-05 -22.608 < 2e-16 ***
   Null deviance: 3510.73 on 29 degrees of freedom
Residual deviance: 716.85 on 24 degrees of freedom
ATC: 889 68
> modp2 <- glm(Species ~ ., data = gala, family = guasipoisson)</pre>
> summary(modp2)
Coefficients:
             Estimate Std. Error t value Pr(>|t|)
(Intercept) 3.1548079 0.2915901 10.819 1.03e-10 ***
Area
          -0.0005799 0.0001480 -3.918 0.000649 ***
Elevation 0.0035406 0.0004925 7.189 1.98e-07 ***
Nearest 0.0088256 0.0102622 0.860 0.398292
Scruz -0.0057094 0.0035251 -1.620 0.118380
Adjacent -0.0006630 0.0001653 -4.012 0.000511 ***
```

(Dispersion parameter for quasipoisson family taken to be 31.74921)

... example

see p.61 where dispersion computed directly from pearson residuals

```
> sum(residuals(modp,"pearson")^2/24)
[1] 31.74914
```

- note that using quasi-Poisson gives *p*-values based on *t*-distribution
- this is by analogy with normal theory linear regression
- could also drop terms and compare scaled deviances to F distribution
 ELM p.61
- another way to handle over dispersion is to use negative binomial model
 ELM §3.3

```
> library(MASS)
> modn <- glm.nb(Species ~ ., data = gala)
> summary(modn)
```

- gives results broadly consistent with quasi-Poisson

Poisson process

SM Ch. 6.5

- ► observe process {*N*(*t*), *t* ∈ (0, *t*₀]} which counts events; i.e. *N*(*t*) is the number of events occurring between time 0 and time *t*
- ► require:

1.
$$\Pr[N(t+h) - N(t) = 1] = \lambda(t)h + o(h)$$

- 2. $\Pr[N(t+h) N(t) = 0] = 1 \lambda(t)h + o(h)$
- 3. events in disjoint subsets of $(0, t_0]$ are independent
- ► then {N(t), t ∈ (0, t₀]} is a (non-homogeneous) Poisson process with rate λ(t)
- can show that

$$\Pr\{N(t_0) = n\} = \frac{\{\Lambda(t_0)\}^n}{n!} \exp\{-\Lambda(t_0)\},\$$

- $\Lambda(t_0) = \int_0^{t_0} \lambda(t) dt$
- if λ(t) = λ, then Λ(t) = λt, and the number of points in (0, t₀] is Poisson with mean λt₀

Rate models

ELM Ch. 3.2

- number of events in $(0, t_0)$ follows a Poisson with mean λt_0
- i.e. $\mu = \lambda t_0$, $\log(\mu) = \log(\lambda) + \log(t_0)$

```
fixed
```

```
> data(dicentric)
> head(dicentric)
 cells ca doseamt doserate
1 478 25
                1
                     0.10
2 1907 102
                1
                  0.25
3 2258 149 1 0.50
4 2329 160 1 1.00
5 1238 75 1 1.50
6 1491 100
                1
                  2.00
> ?dicentric
> modr <- glm(ca ~ log(doserate)*factor(doseamt) + offset(log(cells)),</pre>
  family = poisson, data = dicentric)
Coefficients.
                              Estimate Std. Error z value Pr(>|z|)
                              -2.74671 0.03426 -80.165 < 2e-16 ***
(Intercept)
                              0.07178 0.03518 2.041 0.041299 *
log(doserate)
                             1.62542 0.04946 32.863 < 2e-16 ***
factor(doseamt)2.5
                              2.76109 0.04349 63.491 < 2e-16 ***
factor (doseamt) 5
log(doserate):factor(doseamt)2.5 0.16122 0.04830 3.338 0.000844 ***
log(doserate):factor(doseamt)5 0.19350 0.04243 4.561 5.1e-06 ***
(Dispersion parameter for poisson family taken to be 1)
  Null deviance: 4753.00 on 26 degrees of freedom
Residual deviance: 21.75 on 21 degrees of freedom
```

Log-linear models

SM §10.5.1

```
> data(soccer)
> head(soccer)
 month day year
              team1 team2 score1 score2
   Aug 19 2000 Charlton ManchesterC
                                      4
  Aug 19 2000 Chelsea WestHam
                                      4
З
  Aug 19 2000 Coventry Middlesbr
                                     1
                                            3
  Aug 19 2000
                                     2
4
                 Derby Southampton
                                            2
5
  Aug 19 2000
                                      2
                                           0
                Leeds
                       Everton
6
   Aug 19 2000 Leicester AstonVilla
                                      0
> ?soccer
> dim(soccer)
[1] 380 7
> with(soccer, levels(team1))
[1] "Arsenal" "AstonVilla" "Bradford" "Charlton" "Chelsea" "Coventry"
                                               "Leicester" "Liverpool"
[7] "Derby" "Everton" "Ipswich" "Leeds"
[13] "ManchesterC" "ManchesterU" "Middlesbr" "Newcastle" "Southampton" "Sunderland"
[19] "Tottenham"
                "WestHam"
```

 $y_{ij}^h \sim \text{Poisson}(\mu_{ij}^h), \quad y_{ij}^a \sim \text{Poisson}(\mu_{ij}^a)$ score home/away $\mu_{ij}^h = \exp(\Delta + \alpha_i + \beta_j), \quad \mu_{ij}^a = \exp(\alpha_j - \beta_i)$

 α_i : offensive strength β_i : defensive strength Δ : home advantage

... soccer

STA 2201: Applied Statistics II

Table 10.13 Log-linear and logistic models fitted to Premier League data. The upper part shows the analysis of deviance for log-linear models with parameters for home advantage, offense and defense. The lower part shows a league table based on the overall strengths estimated from the binomial model, with estimated offensive and defensive capabilities from the log-linear model. The baseline team is Arsenal, some of whose parameters are aliased. Individual standard errors are not shown, but they are within +0.02 of the values at the foot of the table.

January 28, 2015

Log-li	near m	odel	Logistic model				
Terms	Terms df		Terms	df	Deviance reduction		
Home	1	33.58	Home		33.58		
Defense	19	39.21	Team	19	79.63		
Offense	19	58.85					
Residual	720	801.08	Residual	332	410.65		
		Overall (δ)	Offensive (α)		Defensive (β)		
Manchester United Liverpool Arsenal Chelsea Leeds		0.39	0.22		0.15		
		0.13	0.13 0.12		-0.08		
		_	0.04				
		-0.09	0.08		-0.22		
		-0.10	0.02		-0.17		
Ipswich		-0.16	-0.10		-0.13		
Sunderland		-0.33	-0.31		-0.10		
Aston Villa Wast Hom		-0.48	-0.31		-0.15		
Middlesboro	ıøh	-0.53	-0.35		-0.1722		

... soccer

- y^h_{ij} ~ Poisson(μ^h_{ij}), y^a_{ij} ~ Poisson(μ^a_{ij}) score home/away
 μ^h_{ij} = exp(Δ + α_i + β_j), μ^a_{ij} = exp(α_j β_i)
- A different analysis: home score, given total score: $y_{ij}^h \mid y_{ij}^h + y_{ij}^a$
- Binomial with

$$p_{ij} = \frac{\mu_{ij}^{h}}{\mu_{ij}^{h} + \mu_{ij}^{a}} = \frac{\exp\{\Delta + (\alpha_{i} + \beta_{i}) - (\alpha_{j} + \beta_{j})\}}{1 + \exp\{\Delta + (\alpha_{i} + \beta_{i}) - (\alpha_{j} + \beta_{j})\}}$$

- Games tied at 0 contribute no information
- δ_i is the 'overall strength' of team i can no longer distinguish defensive and offensive
- Analysis based on logistic regression
- ► R code?

Some data sources

- Iowa State University Stats Dept, Graphics group, has links to the Recovery Act spending
- Kaggle has various competition data sets
- The OECD ran a PISA test visualization contest; the Iowa State Group has some information about it as well.
- ICPSR The Inter-University Consortium for Political and Social Research provides data by topic, geography, etc., including international data
- Canada's Open Government website has an open data portal
- Flowing Data has a handful of haphazard data sets
- World Mapper has links to several data sources
- This ASA site has links to several data sources about 3/4 of the way down the page
- for sports fans

Dose-response curves

STA 22

The attached dataset file contains 4 variables: Response: Biomass Explanatory: Dosage(0,1,2,5,10,15,20), Seedling Species(Category), Ash Boiler Type(Category)

The goal of the experiment is to come up with a dose response curve for each seedling species. Since Ash Boiler Type was shown to be non-significant in the regression model, it was neglected.

	•) 😑 🕤 biomass (version 1).xlsb [Autosaved]								d]		
	2	🏗 🗊 🗄	🖶 🔀 🖪 I	🔁 🖋 🖬	ດ • 🗠 • 🔰	• A + • W	• <i>fx</i>) 🖭 🖣	100%	- ?		
	1	Home L	ayout Tables	Charts	SmartArt	Formulas	Dat	ta Re	view			
Edit Font				Alignment			Number			Forma		
Calibri (Body) - 11 -			• = =	abc 🔻 🚔 Wrap Text 🔻			General 🔹					
Paste B I U 💩 • A •				• = =	E = Merge -						Conditional Formatting	
		B15	😫 🕑 (*)	fx LUP								
		A	В	C	D	E	F	G	Н	- I	J	
	1	Replicate	Ash boiler type	Ash dosage	Seedling species	Biomass (g)						
	2	1	Control	0	Red Pine	0.1256						
	3	2	Control	0	Red Pine	0.1554						
	4	3	Control	0	Red Pine	0.1699						
	5	4	Control	0	Red Pine	0.1553						
	6	5	Control	0	Red Pine	0.2138						
	7	6	Control	0	Red Pine	0.1265						
	8	7	Control	0	Red Pine	0.1467						
	9	1	LUP	1	Red Pine	0.2297						
	10	2	LUP	1	kea rine	0.1233						
01	:1App	ied Statistics II 3	Uapuary 28, 2015	1	Red Pine	0.1511						

Ash.dosage

Biomass..g.

qplot(Ash.dosage, Biomass..g., data = trees, facets = Seedling.species ~., color = Ash.boiler.type)

.Last.value +
geom_smooth(method = "lm",
formula = y ~ poly(x,2), se
= F)

linear models

straight lines for each species, all with same slope:

trees.lm <- lm(formula = Biomass..g. ~ Ash.dosage + Seedling.species, data = trees) #</pre>

orthogonal polynomials as in class

ordinary quadratics (no indication that any higher orders are needed

this allows a different slope for each species

trees.lm4 <- lm(formula = Biomass..g. ~ Ash.dosage * Seedling.species, data = trees)

and a different quadratic for each species

vartrees <-

ddply(trees,.(Seedling.species, Ash.boiler.type,

Ash.borrer.cype,

Ash.dosage), summarize, biomv

= var(Biomass..g.))

qplot(Ash.dosage,biomv,data

= vartrees,

Seedling.species

- RecOralor=Seedling.species)
- White Pine
- White Spruce
- Yellow Birch