
Recap: overdispersion etc.
I saturated model: yi ∼ Bin(ni ,pi), p̃i = yi/ni ,

`(p̃) = Σ{yi log(yi/ni) + (ni − yi) log(1− yi/ni)}

I what’s the saturated model for linear regression? what is
the maximized log-likelihood for this model?

I with binomial data, large-ish ni , residual deviance
compares regression model to saturated model

I if it’s too large, we have the wrong model
I lack of independence among individual Bernoullis; a few

outliers; wrong predictors ELM p. 43,4

I estimate φ̃ = X 2/(n − p) ELM p. 45

I inflate variance β̂ .∼ N(β, φ̃(X TWX )) instead of N(β,X TWX )
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... overdispersion

> summary(bmod)

Call:
glm(formula = cbind(survive, total - survive) ˜ location + period,

family = binomial, data = troutegg)
...
period8 -2.3256 0.2429 -9.573 < 2e-16 ***
period11 -2.4500 0.2341 -10.466 < 2e-16 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 1021.469 on 19 degrees of freedom
Residual deviance: 64.495 on 12 degrees of freedom
AIC: 157.03

> summary(bmod2)

Call:
glm(formula = cbind(survive, total - survive) ˜ location + period,

family = quasibinomial, data = troutegg)

period8 -2.3256 0.5609 -4.146 0.001356 **
period11 -2.4500 0.5405 -4.533 0.000686 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasibinomial family taken to be 5.330358)
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... overdispersion SM §10.6, p.512

I Y | ε ∼ Bin(m, εp)

I E(ε) = 1, var(ε) = ξ

I E(Y ) = E{E(Y | ε)} = E(mpε) = mp

I var(Y ) = var{E(Y | ε)}+ E{var(Y | ε)}

I var(Y ) = m{p(1− p) + ξp2(m − 1)} ntbc

I variance is larger than mp(1− p) see also ELM p.44

I can’t be detected if m = 1 m plays the role of ni
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... matched case-control studies
I suppose we have 1 : M matching one case, M matched controls
I for person i in matched set j , we have

yij , xij , i = 0,1, . . . ,M
I model:

log
pj(xij)

1− pi(xij)
= αj + xT

ijβ

I different intercept for each matched set confounding variables
I same effect of covariates across patients and sets β

I data: in matched set j , we have 1 case (person 0) and
M controls (persons 1, . . . ,M)

I

Pr(y0j = 1 | ΣM
i=1yij = 1) =

Pr(y0j = 1, y1j = 0, . . . , yMj = 0)

Pr(y1j = 0, . . . , yMj = 0)

=
exp(xT

0jβ)

ΣM
i=0 exp(xT

ijβ)
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