
Today
I HW 1: due *today*, 11.59 pm.

I HW 2: due March 4, posted soon
I Backback to Briefcase, Feb 10 6 - 8 pm (Career Centre)
I Recap on trees analysis
I Contingency tables
I Next week: Generalized Linear Models Chs. 6 and 7
I after mid-term break: random effects, mixed linear and

non-linear models, nonparametric regression methods

I Young Statisticians writing Competition
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http://www.utstat.toronto.edu/reid/2201S15.html
http://www.statslife.org.uk/significance/2019-entries-now-open-for-the-2015-young-statisticians-writing-competition
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qplot(Ash.dosage, Biomass..g.,

data = trees, facets =

Seedling.species ∼ ., color =

Seedling.species) +

geom smooth(method = "lm", formula

= y ∼ x + I(x2), se = T)
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qplot(Ash.dosage, Biomass..g.,

data = trees, facets =

Seedling.species ∼ ., color =

Seedling.species) +

geom smooth(method = "lm", formula

= y ∼ poly(x,2), se = T)
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linear models

# straight lines for each species, all with same slope:

trees.lm <- lm(formula = Biomass..g. ˜ Ash.dosage + Seedling.species, data = trees) #

# orthogonal polynomials as in class

trees.lm2 <- lm(formula = Biomass..g. ˜ as.ordered(Ash.dosage) + Seedling.species,
data = trees)

# ordinary quadratics (no indication that any higher orders are needed

trees.lm3 <- lm(formula = Biomass..g. ˜ Ash.dosage + I(Ash.dosageˆ2) + Seedling.species,
data = trees)

# this allows a different slope for each species

trees.lm4 <- lm(formula = Biomass..g. ˜ Ash.dosage * Seedling.species, data = trees)

# and a different quadratic for each species

trees.lm5 <- lm(formula = Biomass..g. ˜ poly(Ash.dosage, 2) * Seedling.species,
data = trees)
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Within cell variances
vartrees <-

ddply(trees,.(Seedling.species,

Ash.boiler.type,

Ash.dosage),summarize, biomv =

var(Biomass..g.))

qplot(Ash.dosage, biomv, data =

vartrees, facets =

Seedling.species .,

color=Seedling.species, main =

"Within cell variances")
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Contingency tables ELM Ch. 4

Quality No Particles Particles Total
Good 320 14 334
Bad 80 36 116
Total 400 50 450
I see p.70 for data.frame wafer and use of xtabs

I Poisson regression:
modl <- glm(y particle + quality, data = wafer, family = poisson)

glm(formula = y ˜ particle + quality, family = poisson, data = wafer)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.6934 0.0572 99.535 <2e-16 ***
particleyes -2.0794 0.1500 -13.863 <2e-16 ***
qualitybad -1.0575 0.1078 -9.813 <2e-16 ***
---
...

Null deviance: 474.10 on 3 degrees of freedom
Residual deviance: 54.03 on 1 degrees of freedom
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... contingency tables
Quality No Particles Particles Total
Good 320 14 334
Bad 80 36 116
Total 400 50 450

modl <- glm(y particle + quality, data = wafer, family = poisson)

Model:
logµij = γ + αi + βj

---
...

Null deviance: 474.10 on 3 degrees of freedom
Residual deviance: 54.03 on 1 degrees of freedom

Test of no interaction between particle and quality
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... contingency tables
Quality No Particles Particles Total
Good 320 14 334
Bad 80 36 116
Total 400 50 450

Multinomial model: fix total sample size (450):

y ∼ Mult(n;p);pij = Pr{single observation is in cell(i , j)}

L(p; y) =
n!

y11!y12!y21!y22!
py12

11 py21
12 py21

21 py11
22

Independence: pij = pi × pj
Maximum likelihood estimates:
– under independence p̂ij = p̂i p̂j =
– unrestricted p̃ij =

STA 2201: Applied Statistics II February 4, 2015 12/28



... contingency tables
Quality No Particles Particles Total
Good 320 296.89 14 37.11 334
Bad 80 103.11 36 12.89 116
Total 400 50 450

2*sum(sum(ov*log(ov/fv))
[1] 54.03045

see ELM for construction of ov and fv

sum((ov-fv)ˆ 2/fv)
[1] 62.81231

modb <- glm (matrix(wafer$y, nrow=2) ˜ 1, family = binomial)

Null deviance: 54.03 on 1 degrees of freedom
Residual deviance: 54.03 on 1 degrees of freedom

modb2 <- glm(matrix(wafer$y, nrow = 2) ˜ c("nop","p"), family = binomial)

Null deviance: 54.03 on 1 degrees of freedom
Residual deviance: 0.00 on 0 degrees of freedom
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... contingency tables
Quality No Particles Particles Total
Good 320 14 334
Bad 80 36 116
Total 400 50 450

Fisher’s exact test of independence: condition on all marginal
totals
only y11 free to vary or any other single element

Pr(Y11 = y11 | y1+, y+1,n) =

(y1+
y11

)( n−y1+
y1+−y11

)( n
y1+

)
> fisher.test(ov)

Fisher’s Exact Test for Count Data

data: ov
p-value = 2.955e-13
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:

5.090628 21.544071
sample estimates: odds ratio 10.21331 {\rf ?where is 10.213 in previous analyses}
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Fisher’s exact test Agresti, CDA 2nd ed., p.92

I test of independence in 2× 2 table
I based on hypergeometric distribution
I conditions on all marginal totals
I this eliminates all nuisance parameters (parameters

governing marginal distribution)

I

Guess poured first
Poured First Milk Tea Total

Milk 3 1 4
Tea 1 3 4
Total 4 4 8

Pr(y11 ≥ 3) =

(4
3

)(4
1

)(8
4

) +

(4
4

)(4
0

)(8
4

) = 0.229 + 0.014 = 0.243

Fisher’s Exact Test for Count Data
data: tea p-value = 0.4857 alternative hypothesis: true odds ratio is not equal to 1 95
percent confidence interval: 0.2117329 621.9337505 sample estimates: odds ratio 6.408309
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... Fisher’s exact test
I achievable p-values: 0.014, 0.243, 0.757, 0.986, 1.0

I null distribution concentrated on only 5 sample points

I Agresti recommends mid p-value:

1
2

Pr(Y11 = 3) + Pr(Y11 = 4) = 0.129
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Several 2× 2 Tables ELM, §4.4; SM, Example 10.19

Smoker Non-smoker
dead 139 (24%) 230 (31%)
alive 443 502
total 582 732 1314
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... 2× 2 tables

> summary(glm(cbind(alive,dead) ˜ smoker, data = smoking, family = binomial))
Call:
glm(formula = cbind(alive, dead) ˜ smoker, family = binomial,

data = smoking)

Deviance Residuals:
Min 1Q Median 3Q Max

-12.173 -5.776 1.869 5.674 9.052

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.78052 0.07962 9.803 < 2e-16 ***
smoker 0.37858 0.12566 3.013 0.00259 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 641.5 on 13 degrees of freedom
Residual deviance: 632.3 on 12 degrees of freedom
AIC: 683.29

Number of Fisher Scoring iterations: 4
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... 2× 2 tables
Smoker Non-smoker

dead 139 (24%) 230 (31%)
alive 443 502
total 582 732 1314

> anova(glm(cbind(alive,dead) ˜ smoker, data = smoking, family = binomial))
Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(alive, dead)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 13 641.5
smoker 1 9.2003 12 632.3
> with(smoking, xtabs(cbind(dead,alive) ˜ smoker))

smoker dead alive
0 230 502
1 139 443

> summary(.Last.value)
Call: xtabs(formula = cbind(dead, alive) ˜ smoker)
Number of cases in table: 1314
Number of factors: 2
Test for independence of all factors:
Chisq = 9.121, df = 1, p-value = 0.002527
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... 2× 2 tables
sm non-sm sm non-sm sm non-sm

d 2 1 3 5 14 7
a 53 61 121 152 95 114 · · ·

55 62 124 157 109 121
Age 18-24 25-34 35-44 · · ·

> summary(glm(cbind(alive,dead) ˜ smoker + factor(age), data = smoking, family = binomial))
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.8601 0.5939 6.500 8.05e-11 ***
smoker -0.4274 0.1770 -2.414 0.015762 *
factor(age)25-34 -0.1201 0.6865 -0.175 0.861178
factor(age)35-44 -1.3411 0.6286 -2.134 0.032874 *
factor(age)45-54 -2.1134 0.6121 -3.453 0.000555 ***
factor(age)55-64 -3.1808 0.6006 -5.296 1.18e-07 ***
factor(age)65-74 -5.0880 0.6195 -8.213 < 2e-16 ***
factor(age)75+ -27.8073 11293.1437 -0.002 0.998035
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 641.4963 on 13 degrees of freedom
Residual deviance: 2.3809 on 6 degrees of freedom
AIC: 65.377

Number of Fisher Scoring iterations: 20
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Log-linear models ELM 4.4

I suppose we have 3 factors, each with several levels
I observe a response at each combination of factors
I linear model might be

yijk = µ+αi+βj+γk+εijk , k = 1, . . . ,K ; j = 1, . . . , J; i = 1, . . . I

I or

yijk = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + εijk

I if the yijk are positive counts, rather than continuous, then
Poisson model could have

yijk ∼ Po(µijk ), log(µijk ) = µ+ αi + βj + γk

I or

log(µijk ) = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk
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... §4.4
I several log-linear models for smoking data are fit
I and compared to binomial model above
I joint independence, conditional independence, marginal

independence, uniform association
I all related to sub-models of general log-linear Poisson

model

I binomial model above estimates parameters that control
marginal probabilities

I Mantel-Haenszel test is a 2× 2× k version of Fisher’s
exact test
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... §4.4

> data(femsmoke)
> ct3 <- xtabs(y ˜ smoker + dead + age, data = femsmoke)
> apply(ct3, 3, function(x)(x[1,1]*x[2,2])/(x[1,2]*x[2,1]))

18-24 25-34 35-44 45-54 55-64 65-74 75+
2.301887 0.753719 2.400000 1.441748 1.613672 1.148515 NaN
> mantelhaen.test(ct3,exact=T)

Exact conditional test of independence in 2 x 2 x k tables

data: ct3
S = 139, p-value = 0.01591
alternative hypothesis: true common odds ratio is not equal to 1
95 percent confidence interval:
1.068889 2.203415

sample estimates:
common odds ratio

1.530256
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Economist, January 24 2015

http://www.economist.com/news/finance-and-economics/21640444-oxfam-causes-stir-stat-wrong-yardstick









