Today

- HW 1: due *today*, 11.59 pm.
- HW 2: due March 4, posted soon
- Backback to Briefcase, Feb 10 6 8 pm (Career Centre)
- Recap on trees analysis
- Contingency tables
- ▶ Next week: Generalized Linear Models Chs. 6 and 7
- after mid-term break: random effects, mixed linear and non-linear models, nonparametric regression methods
- Young Statisticians writing Competition

qplot(Ash.dosage, Biomass..g., data = trees, facets = Seedling.species ~ ., color = Seedling.species) + geom.smooth(method = "lm", formula = y ~ x + I(X²), se = T)

Yellow Birch

linear models

straight lines for each species, all with same slope:

trees.lm <- lm(formula = Biomass..g. ~ Ash.dosage + Seedling.species, data = trees) #

orthogonal polynomials as in class

ordinary quadratics (no indication that any higher orders are needed

this allows a different slope for each species

trees.lm4 <- lm(formula = Biomass..g. ~ Ash.dosage * Seedling.species, data = trees)

and a different quadratic for each species

vartrees <-

ddply(trees,.(Seedling.species,

Ash.boiler.type,

Ash.dosage), summarize, biomv =

var(Biomass..g.))

qplot(Ash.dosage, biomv, data =

vartrees, facets =

Seedling.species .,

color=Seedling.species, main =

"Within cell variances")

Contingency tables

ELM Ch. 4

Quality	No Particles	Particles	Total
Good	320	14	334
Bad	80	36	116
Total	400	50	450

see p.70 for data.frame wafer and use of xtabs

Poisson regression:

modl <- glm(y particle + quality, data = wafer, family = poisson)
glm(formula = y ^ particle + quality, family = poisson, data = wafer)
...
Coefficients:
 Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.6934 0.0572 99.535 <2e-16 ***
particleyes -2.0794 0.1500 -13.863 <2e-16 ***
qualitybad -1.0575 0.1078 -9.813 <2e-16 ***
--...
Null deviance: 474.10 on 3 degrees of freedom
Residual deviance: 54.03 on 1 degrees of freedom</pre>

Quality	No Particles	Particles	Total
Good	320	14	334
Bad	80	36	116
Total	400	50	450

modl <- glm(y particle + quality, data = wafer, family = poisson)</pre>

Model:

$$\log \mu_{ij} = \gamma + \alpha_i + \beta_j$$

.... Null deviance: 474.10 on 3 degrees of freedom Residual deviance: 54.03 on 1 degrees of freedom

Test of no interaction between particle and quality

Quality	No Particles	Particles	Total
Good	320	14	334
Bad	80	36	116
Total	400	50	450

Multinomial model: fix total sample size (450):

 $y \sim \text{Mult}(n; p); p_{ij} = \text{Pr}\{\text{single observation is in cell}(i, j)\}$

$$L(p; y) = \frac{n!}{y_{11}! y_{12}! y_{21}! y_{22}!} p_{11}^{y_{12}} p_{12}^{y_{21}} p_{21}^{y_{21}} p_{22}^{y_{11}}$$

Independence: $p_{ij} = p_i \times p_j$ Maximum likelihood estimates:

- under independence $\hat{p}_{ij} = \hat{p}_i \hat{p}_j =$
- unrestricted $\tilde{p}_{ij} =$

Quality	No Particles	Particles	Total
Good	320 296.89	14 37.11	334
Bad	80 1 <mark>03</mark> .11	36 <mark>12.89</mark>	116
Total	400	50	450

2*sum(sum(ov*log(ov/fv)) [1] 54.03045

see ELM for construction of ${\rm ov}$ and ${\rm fv}$

```
sum((ov-fv)^ 2/fv)
[1] 62.81231
```

modb <- glm (matrix(wafer\$y, nrow=2) ~ 1, family = binomial)</pre>

Null deviance: 54.03 on 1 degrees of freedom Residual deviance: 54.03 on 1 degrees of freedom

```
modb2 <- glm(matrix(wafer$y, nrow = 2) ~ c("nop","p"), family = binomial)</pre>
```

Null deviance: 54.03 on 1 degrees of freedom Residual deviance: 0.00 on 0 degrees of freedom

Quality	No Particles	Particles	Total
Good	320	14	334
Bad	80	36	116
Total	400	50	450

Fisher's exact test of independence: condition on all marginal totals only y_{11} free to vary or any other single element

 $\Pr(Y_{11} = y_{11} \mid y_{1+}, y_{+1}, n) = \frac{\binom{y_{1+}}{y_{11}}\binom{n-y_{1+}}{y_{1+}-y_{11}}}{\binom{n}{y_{1+}}}$

```
> fisher.test(ov)
Fisher's Exact Test for Count Data
data: ov
p-value = 2.955e-13
alternative hypothesis: true odds ratio is not equal to 1
95 percent confidence interval:
    5.090628 21.544071
sample estimates: odds ratio 10.21331 {\rf ?where is 10.213 in previous analyses}
```

Agresti, CDA 2nd ed., p.92

- test of independence in 2 × 2 table
- based on hypergeometric distribution
- conditions on all marginal totals
- this eliminates all nuisance parameters (parameters governing marginal distribution)

Guess poured first

$$\Pr(y_{11} \ge 3) = \frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}} + \frac{\binom{4}{4}\binom{4}{0}}{\binom{8}{4}} = 0.229 + 0.014 = 0.243$$

- test of independence in 2×2 table
- based on hypergeometric distribution
- conditions on all marginal totals
- this eliminates all nuisance parameters (parameters governing marginal distribution)

Guess poured first

$$\Pr(y_{11} \ge 3) = \frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}} + \frac{\binom{4}{4}\binom{4}{0}}{\binom{8}{4}} = 0.229 + 0.014 = 0.243$$

- test of independence in 2×2 table
- based on hypergeometric distribution
- conditions on all marginal totals
- this eliminates all nuisance parameters (parameters governing marginal distribution)

Guess poured first

	Milk	
	1	

$$\Pr(y_{11} \ge 3) = \frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}} + \frac{\binom{4}{4}\binom{4}{0}}{\binom{8}{4}} = 0.229 + 0.014 = 0.243$$

- test of independence in 2×2 table
- based on hypergeometric distribution
- conditions on all marginal totals
- this eliminates all nuisance parameters (parameters governing marginal distribution)

	Milk		
	1		

$$\Pr(y_{11} \ge 3) = \frac{\binom{4}{3}\binom{4}{1}}{\binom{8}{4}} + \frac{\binom{4}{4}\binom{4}{0}}{\binom{8}{4}} = 0.229 + 0.014 = 0.243$$

- test of independence in 2×2 table
- based on hypergeometric distribution
- conditions on all marginal totals
- this eliminates all nuisance parameters (parameters governing marginal distribution)
 Guess poured first

		0,000	e pearea m	01	
	Poured First	Milk	Tea	Total	
	Milk	3	1	4	
	Tea	1	3	4	
_	Total	4	4	8	
_		$\binom{4}{2}\binom{4}{1}$	$\binom{4}{4}\binom{4}{0}$		

$$\Pr(y_{11} \ge 3) = \frac{\binom{4}{3}\binom{1}{1}}{\binom{8}{4}} + \frac{\binom{4}{4}\binom{4}{0}}{\binom{8}{4}} = 0.229 + 0.014 = 0.243$$

achievable p-values: 0.014, 0.243, 0.757, 0.986, 1.0

null distribution concentrated on only 5 sample points

Agresti recommends mid p-value:

$$\frac{1}{2}\Pr(Y_{11} = 3) + \Pr(Y_{11} = 4) = 0.129$$

- achievable p-values: 0.014, 0.243, 0.757, 0.986, 1.0
- null distribution concentrated on only 5 sample points

Agresti recommends mid p-value:

$$\frac{1}{2}\Pr(Y_{11}=3) + \Pr(Y_{11}=4) = 0.129$$

- achievable p-values: 0.014, 0.243, 0.757, 0.986, 1.0
- null distribution concentrated on only 5 sample points
- Agresti recommends mid p-value:

$$\frac{1}{2}\Pr(Y_{11}=3) + \Pr(Y_{11}=4) = 0.129$$

Several 2×2 Tables

ELM, §4.4; SM, Example 10.19

Age (years)	Smokers	Non-smokers		
Overall	139/582 (24)	230/732 (31)		
18-24	2/55 (4)	1/62 (2)		
25-34	3/124 (2)	5/157 (3)	Та	bla 6 9 Twenty year
35-44	14/109 (13)	7/121 (6)	14	ible 0.6 Twenty-year
45-54	27/130 (21)	12/78 (15)	su	rvival and smoking
55-64	51/115 (44)	40/121 (33)	Sta	nus for 1314 women
65-74	29/36 (81)	101/129 (78)	Th	e smoker and
75+	13/13 (100)	64/64 (100)	no	n-smoker columns
		D Prostant Petrolauter	co	ntain number dead/total
			(%	dead).
	Smoker	Non-smoke	er	
dead	139 (24%) 230 (31%)		
alive	443	502		
total	582	732		1314

\dots 2 \times 2 tables

```
> summary(glm(cbind(alive,dead) ~ smoker, data = smoking, family = binomial))
Call:
glm(formula = cbind(alive, dead) ~ smoker, family = binomial,
    data = smoking)
Deviance Residuals:
Min 1Q Median 3Q Max
-12.173 -5.776 1.869 5.674 9.052
Coefficients.
           Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.78052 0.07962 9.803 < 2e-16 ***
smoker 0.37858 0.12566 3.013 0.00259 **
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1
(Dispersion parameter for binomial family taken to be 1)
   Null deviance: 641.5 on 13 degrees of freedom
Residual deviance: 632.3 on 12 degrees of freedom
ATC: 683.29
Number of Fisher Scoring iterations: 4
```

\dots 2 \times 2 tables

	Smoker	Non-smoker	
dead	139 (24%)	230 (31%)	
alive	443	502	
total	582	732	1314

> anova(glm(cbind(alive,dead) ~ smoker, data = smoking, family = binomial))
Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(alive, dead)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev NULL 13 641.5 smoker 1 9.2003 12 632.3 > with(smoking, xtabs(cbind(dead,alive) ~ smoker))

smoker dead alive 0 230 502 1 139 443 > summary(.Last.value) Call: xtabs(formula = cbind(dead, alive) ~ smoker) Number of cases in table: 1314 Number of factors: 2 Test for independence of all factors: Chisq = 9.121, df = 1, p-value = 0.002527

\dots 2 \times 2 tables

	sm	non-sm	sm	non-sm	sm	non-sm	
d	2	1	3	5	14	7	
а	53	61	121	152	95	114	
	55	62	124	157	109	121	
Age	18-24		25-34		35-44		• • •

> summary(glm(cbind(alive,dead) ~ smoker + factor(age), data = smoking, family = binomial))
...
Coefficients:

	Estimate	Std. Error	z value	Pr(> z)						
(Intercept)	3.8601	0.5939	6.500	8.05e-11	* * *					
smoker	-0.4274	0.1770	-2.414	0.015762	*					
factor (age) 25-34	-0.1201	0.6865	-0.175	0.861178						
factor (age) 35-44	-1.3411	0.6286	-2.134	0.032874	*					
factor (age) 45-54	-2.1134	0.6121	-3.453	0.000555	* * *					
factor (age) 55-64	-3.1808	0.6006	-5.296	1.18e-07	* * *					
factor (age) 65-74	-5.0880	0.6195	-8.213	< 2e-16	* * *					
factor (age) 75+	-27.8073	11293.1437	-0.002	0.998035						
Signif. codes: 0	`***' 0.00	0.01	`*' 0.0	05 `.' 0.1	1 1					
(Dispersion parameter for binomial family taken to be 1)										
			-							
Null deviance:	641.4963	on 13 dec	grees of	freedom						
Residual deviance:	2.3809	on 6 dec	rees of	freedom						

AIC: 65.377

Number of Fisher Scoring iterations: 20

ELM 4.4

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots, J$

► or

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$

 if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

▶ or

 $\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$

ELM 4.4

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots, J$

► Or

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$

 if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

▶ or

 $\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$

ELM 4.4

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots I$

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$$

 if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

▶ or

$$\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$$

ELM 4.4

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots I$ • or

$$\mathbf{y}_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$$

▶ if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

► or

$$\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$$

ELM 4.4

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots I$

or

$$\mathbf{y}_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$$

 if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

or

$$\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$$

ELM 4.4

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots I$

or

$$\mathbf{y}_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$$

 if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

or

$$\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$$

several log-linear models for smoking data are fit

- and compared to binomial model above
- joint independence, conditional independence, marginal independence, uniform association
- all related to sub-models of general log-linear Poisson model
- binomial model above estimates parameters that control marginal probabilities
- Mantel-Haenszel test is a 2 × 2 × k version of Fisher's exact test

- several log-linear models for smoking data are fit
- and compared to binomial model above
- joint independence, conditional independence, marginal independence, uniform association
- all related to sub-models of general log-linear Poisson model
- binomial model above estimates parameters that control marginal probabilities
- Mantel-Haenszel test is a 2 × 2 × k version of Fisher's exact test

- several log-linear models for smoking data are fit
- and compared to binomial model above
- joint independence, conditional independence, marginal independence, uniform association
- all related to sub-models of general log-linear Poisson model
- binomial model above estimates parameters that control marginal probabilities
- Mantel-Haenszel test is a 2 × 2 × k version of Fisher's exact test

- several log-linear models for smoking data are fit
- and compared to binomial model above
- joint independence, conditional independence, marginal independence, uniform association
- all related to sub-models of general log-linear Poisson model
- binomial model above estimates parameters that control marginal probabilities
- Mantel-Haenszel test is a 2 × 2 × k version of Fisher's exact test

- several log-linear models for smoking data are fit
- and compared to binomial model above
- joint independence, conditional independence, marginal independence, uniform association
- all related to sub-models of general log-linear Poisson model
- binomial model above estimates parameters that control marginal probabilities
- Mantel-Haenszel test is a 2 × 2 × k version of Fisher's exact test

- several log-linear models for smoking data are fit
- and compared to binomial model above
- joint independence, conditional independence, marginal independence, uniform association
- all related to sub-models of general log-linear Poisson model
- binomial model above estimates parameters that control marginal probabilities
- Mantel-Haenszel test is a 2 × 2 × k version of Fisher's exact test

... §**4.4**

Exact conditional test of independence in $2 \times 2 \times k$ tables

Real income per person

Economist.com

Economist, January 24 2015

Real income per person

Real income per person

Real income per person

Real income per person