
Today
I HW 2 due March 4
I Case Studies,SSC Annual Meeting
I model choice
I random effects and mixed effects models ELM Ch. 8

I generalized linear models separate systematic part of the
model from the random part of the model

I linear predictor: g(µi) = xT
i β E(yi ) = µi ; var(yi ) = φV (µi )

I exponential family:
f (yi ;µi) ∝ exp[{θiyi − b(θi)}/(aiφ) + c(yi , φ)]

I model choice concerns how to build the linear predictor
linear in β

I nonlinear least squares generalizes η, keeps f (·) in a small
class location: normal, sometimes t , occasionally extreme-value
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Empirical models CD Ch. 6.5

I in many fields of study the models used as a basis for
interpretation do not have a special subject-matter base

I rather represent broad patterns of haphazard variation
quite widely seen

I this is typically combined with a specification of the
systematic part of the variation

I which is often the primary focus
I modelling then often reduces to a choice of distributional

form
I and of the independence structure of the random

components
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... empirical models CD Ch. 6.5

I functional form of the probability distribution sometimes critical, for
example where an implicit assumption is involved of a relationship
between variance and mean: geometric, Poisson, binomial

I the simple situations that give rise to binomial, Poisson, geometric,
exponential, normal and log normal are some guide to empirical model
choice in more complex situations

I In some specific contexts there is a tradition establishing the form of
model likely to be suitable

I illustration: financial time series – Y (t) = log{P(t)/P(t − 1)} has a
long-tailed distribution, small serial correlation, large serial correlation in
Y 2(t)

I illustration: a common type of response arises as the time from some
clearly defined origin to a critical event

I often have a long tail of large values; exponential distribution is a
natural staring point

I extensions may be needed, including Weibull, gamma or log-normal
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... empirical models CD Ch. 6.5

I often helpful to develop random and systematic parts of
the model separately

I models should obey natural or known constraints, even if
these lie outside the range of the data

I example P(Y = 1) = α + βx
I often use instead log P(Y =1)

P(Y =0) = α′ + β′x
I however, β measures the change in probability per unit

change in x
I in many common applications, relationship between y and

several variables x1, . . . xp is involved
I unlikely that the system is wholly linear
I impractical to study nonlinear systems of unknown form
I therefore reasonable to begin with a linear model
I and seek isolated nonlinearities
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... empirical models CD Ch. 6.5

I often helpful to develop random and systematic parts of
the model separately

I naive approach: one random variable per study individual
I values for different individuals independent
I more realistic: possibility of structure in the random

variation
I dependence in time or space, or a hierarchical structure

corresponding to levels of aggregation
I ignoring these complications may give misleading

assessments of precision, or bias the conclusions
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... empirical models CD Ch. 6.5

I example: standard error of mean σ/
√

n
I but, under mutual correlation, becomes

(σ/
√

n)(1 + Σρij)
1/2

I if each observation correlated with k others, at same level,
(σ/
√

n)(1 + kρ)1/2

I 0.1 0.2 0.4 0.8
--------------------------
1.14 1.26 1.48 1.84
1.18 1.34 1.61 2.05
1.22 1.41 1.73 2.24
1.26 1.48 1.84 2.41
1.30 1.55 1.95 2.57
1.34 1.61 2.05 2.72
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... empirical models CD Ch. 6.5

I important to be explicit about the unit of analysis
I has a bearing on independence assumptions involved in

model formulation
I example: if all patients in the same clinic receive the same

treatment
I then the clinic is the unit of analysis
I in some contexts there may be a clear hierarchy
I assessment of precision comes primarily from

comparisons between units of analysis
I modelling of variation within units is necessary only if of

intrinsic interest
I when relatively complex responses are collected on each

study individual, the simplest way of condensing these is
through a number of summary descriptive measures

I in other situations it may be necessary to represent
explicitly the different hierarchies of variation
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Models with random effects ELM Ch. 8

I simplest case: one-way layout, linear model
comparing a groups; equality of means

I yij = µ+ αi + εij , i = 1, . . . ,a; j = 1, . . .n
I usually assume εij ∼ N(0, σ2)

I ANOVA:

Source df SS MS E(MS)

between groups a− 1 Σij (ȳi. − ȳ..)2 SSb/dfb σ2 +
nΣiα

2
i

a− 1

within groups a(n − 1) Σij (yij − ȳi.)
2 SSw/dfw σ2

I MSb/MSw follows an F(a−1),a(n−1) distribution under
H0 : αi = 0, i = 1, . . . ,a
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... random effects
I change the model assumptions
I yij = µ+ αi + εij , i = 1, . . . ,a; j = 1, . . .n
I αi ∼ N(0, σ2

a), εij ∼ N(0, σ2)

I ANOVA:

Source df SS MS E(MS)

between groups a− 1 Σij (ȳi. − ȳ..)2 SSb/dfb σ2 + nσ2
a

within groups a(n − 1) Σij (yij − ȳi.)
2 SSw/dfw σ2

I MSb/MSw follows an F(a−1),a(n−1) distribution under
H0 : σ2

a = 0
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Inference
I fixed effects model
I var(ȳi. − ȳi ′.) = 2σ2/n
I confidence intervals for µi − µi ′

I σ2 needs to be estimated, but not of particular interest
I typically use MSE = SSE/{a(n − 1)}

I random effects model
I The parameters σ2 and σ2

a are now of interest
I σ̃2 = MSE ; σ̃2

a =?

I maximum likelihood estimates
I REML: restricted maximum likelihood estimates
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Another easy example: two-way layout
I randomized block design
I yij = µ+ αi + βj + εij , i = 1, . . . ,a; j = 1, . . . ,b

I βj ∼ N(0, σ2
b), εij ∼ N(0, σ2)

I a mixed effect model, with one fixed effect (treatment) and
one random effect (blocks)

I ANOVA:
Source df SS E(MS)

treatments a− 1 Σij (ȳi. − ȳ..)2 σ2 +
nΣiα

2
i

a− 1

blocks b − 1 Σij (ȳ.j − ȳ..)2 σ2 + aσ2
b

error (a− 1)(b − 1) Σij (yij − ȳi. − ȳ.j + ȳ..)2 σ2

cov(yij , yi′ j ) = cov(βj + εij , βj + εi′ j ) = σ2
b + σ2
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Randomized block design with repeats
I repeat observations for each treatment, in each block
I yijk = µ+ αi + βj + (αβ)ij + εijk ,

i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . n

I βj ∼ N(0, σ2
b), (αβ)ij ∼ N(0, σ2

ab), εij ∼ N(0, σ2)
I ANOVA:

Source df SS E(MS)

treatments a− 1 Σijk (ȳi. − ȳ..)2 σ2 + nσ2
ab +

nbΣiα
2
i

a−1

blocks b − 1 Σijk (ȳ.j − ȳ..)2 σ2 + naσ2
b

interaction (a− 1)(b − 1) Σijk (yij − ȳi. − ȳ.j + ȳ..)2 σ2 + nσ2
ab

error (n − 1)ab Σijk (yijk − ȳij.)
2 σ2

if the repeats are ’true replications’, then we have a full factorial
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A general framework

y | γ = Xβ + Zγ + ε, ε ∼ N(0, σ2I)

I γ a q−vector of random effects; β a p-vector of fixed effects
I assumption γ ∼ N(0, σ2D)

I marginal distribution

y ∼ N(Xβ, σ2(I + ZDZ T)) = N(Xβ, σ2V ), say

I applications
I multi-level models
I repeated measures
I longitudinal data
I components of variance

STA 2201: Applied Statistics II February 25, 2015 13/19



SM Example 9.16
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Estimation
I y ∼ N(Xβ, σ2(I + ZDZ T)) = N(Xβ, σ2V )

I

`(β; y) = −n
2

log(σ2)− 1
2

log |V | − 1
2σ2 (y − Xβ)TV−1(y − Xβ)

I V may have one or more unknown parameters
I Example 9.16: γ ∼ N3(0, σ2

bI)

I

I+ZDZ T =


1 + σ2

b/σ
2 σ2

b/σ
2 0 0 0

σ2
b/σ

2 1 + σ2
b/σ

2 0 0 0
0 0 1 + σ2

b/σ
2 0 0

0 0 0 1 + σ2
b/σ

2 σ2
b/σ

2

0 0 0 σ2
b/σ

2 1 + σ2
b/σ

2


I β̂ψ = (X TV−1X )−1X TV−1y
σ̂2
ψ = 1

n (y − X β̂ψ)TV−1(y − X β̂ψ)
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... estimation
I β̂ψ = (X TV−1X )−1X TV−1y
σ̂2
ψ = 1

n (y − X β̂ψ)TV−1(y − X β̂ψ)

I profile log-likelihood

`p(ψ) = −1
2

log σ̂2
ψ −

1
2

log |Vψ|

I to get better divisors properly adjust for degrees of freedom
I modified profile log-likelihood

also called restricted profile log-likelihood

`mp(σ2, ψ) = −1
2

log |Vψ| −
1
2

log |X TV−1
ψ X |

− 1
2σ2 (y − X β̂ψ)TV−1

ψ (y − X β̂ψ)− n − p
2

logσ2

I

`p(σ2, ψ) = −n
2

log(σ2)− 1
2

log |V | − 1
2σ2 σ̂

2
ψ
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Example 9.18
I repeated measurements on the 30 individuals, at 5 time

points
I might expect that regression relationship against time is

similar for each individual, subject to random variation
I model yjt = β0 + bj0 + (β1 + bj1)xjt + εjt , t = 1, . . . ,5
I xjt takes values 0,1,2,3,4 for t = 1,2,3,4,5
I same for each j
I data(rat.growth, library="SMPracticals")

I (bj0,bj1)
.∼ N2(0,Ωb), εjt

.∼ N(0, σ2) independent
I two fixed parameters β0, β1

I four variance/covariance parameters:
σ2

b0, σ
2
b1, cov(b0,b1), σ2
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... Example 9.18
I maximum likelihood estimates of fixed effects:
β̂0 = 156.05(2.16), β̂1 = 43.27(0.73)

I weight in week 1 is estimated to be about 156 units, and
average increase per week estimated to be 43.27

I there is large variability between rats: estimated standard
deviation of 10.93 for intercept, 3.53 for slope

I there is little correlation between the intercepts and slopes
I library(MASS) # this is included the standard R distribution

library(SMPracticals) # this has various data sets from Davison’s book
library(ellipse) # but I got an error the first time and had to download an additional package
library(SMPracticals) # and now it works
data(rat.growth) # for Example 9.18
rat.growth[1:10,] # to see what it looks like, and to see variable names
with(rat.growth, plot( y ˜ week , type="l"))
separate.lm = lm(y ˜ week + factor(rat)+ week:factor(rat), data = rat.growth) # fit separate linear models to each set of 5 observations
rat.mixed = lmer(y ˜ week + (week|rat), data = rat.growth) # REML is the default
summary(rat.mixed) # compare Table 9.28
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