
Today
I data presentation Jennifer

I model selection – Cox & Donnelly

I in Boston

I semi-parametric regression

I HW 3: due March 21

I Final Exam: April 11 2:00 – 5:00 pm

STA 2201: Applied Statistics II March 7, 2014 1/22



... PSID – using lme

From last week: those annoying degrees of freedom
not reported if you use lmer

> mmod = lme(log(income) ˜ cyear*sex + age + educ ,
random = ˜ 1 + cyear | person, data=psid)

Fixed effects: log(income) ˜ cyear * sex + age + educ
Value Std.Error DF t-value p-value

(Intercept) 6.674204 0.5433252 1574 12.283995 0.0000
cyear 0.085312 0.0089996 1574 9.479521 0.0000
sexM 1.150313 0.1212925 81 9.483790 0.0000
age 0.010932 0.0135238 81 0.808342 0.4213
educ 0.104210 0.0214366 81 4.861287 0.0000
cyear:sexM -0.026307 0.0122378 1574 -2.149607 0.0317

> mmod2 = lmer(log(income) ˜ cyear*sex + age + educ +
+ (cyear | person), data=psid)

Fixed effects:
Estimate Std. Error t value

(Intercept) 6.67420 0.54332 12.284
cyear 0.08531 0.00900 9.480
sexM 1.15031 0.12129 9.484
age 0.01093 0.01352 0.808
educ 0.10421 0.02144 4.861
cyear:sexM -0.02631 0.01224 -2.150
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Cox & Donnelly: Model Choice (Ch. 7)
I Mostly, we aim to summarize the aspects of interest by

parameters, preferably small in number and formally
defined as properties of the probability model

I parameters of interest, directly addressing the questions of
concern; often concerning systematic variation

I nuisance parameters, necessary to complete the statistical
model; often concerning haphazard variation

I the choice of parameters involves their interpretability
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... parameters of interest §7.1.2
I it is essential that subject-matter interpretation is clear and

measured in appropriate units, which should always be
stated

I it is preferable that the units chosen give numerical
answers that are neither inconveniently large or small

I example: assessment of risk factors often/usually
expressed as a ratio or percentage effect

I but for public health we’d like to know how many individuals
could be affected – this is a difference of probabilities, not
a ratio
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... choice of a specific model §7.3
I often this will involve at least two levels of choice, first

between distinct separate families and then between
specific models within a chosen family

I of course all choices are to some extent provisional

I example: survival data – gamma or weibull model both
extend the exponential

I example: linear regression E(Y ) = β0 + β1x , or
E(Y ) = γ0/(1 + γ1x)

I neither, one, or both may be adequate
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... choice of a specific model
I comparisons between models are sometimes made using

Bayes factors, ... however, misleading if neither model is
adequate

I for dependencies of y on x that are curved, a low-degree
polynomial might be adequate

I but subject-matter may suggest an asymptote, in which
case E(Y ) = α+ γe−δx may be preferred
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... model choice with a natural hierarchy
I polynomials provide a flexible family of smooth

relationships, although poor for extrapolation
I it will typically be wise to measure the xi from a meaningful

origin near the centre of the data

I example:
E(Y ) = β00 + β10x1 + β01x2 + β20x2

1 + β11x1x2 + β02x2
2

I it would not normally be sensible to include β11,
and not β20, β02

I with qualitative (categorical) x ’s, this means models with
interaction terms should include the corresponding main
effects
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... model choice
I example: E(Y ) = β0 + β1x + β2x2 + · · ·+ βpxp

I example: time series AR(p)
yt = µ+ ρ1(yt−1 − µ) + · · ·+ ρp(yt−p − µ) + εt

I for a single set of data choose the smallest order
compatible with the data, using standard tests

I for several sets of data, usually would choose the same
order for each set
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... choosing among explanatory variables
I response y , potential explanatory variables x1, . . . , xp
I suppose interest focusses on the role of a particular

variable or set of variables, x∗

I the value, standard error, and interpretation of the
coefficient of x∗ depends on which other variables are
included

I variables prior to x∗ in the generating process should be
included in the model unless...

I unless these variables are conditionally independent of y ,
given x∗ (and other variables in the model)

I OR unless they are conditionally independent of x∗, given
other variables in the model

I variables intermediate between x∗ and y are omitted in
initial assessment of the effect of x∗

I but may be needed later to study the pathways of
dependence
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... choosing among explanatory variables
I relatively mechanical methods of choosing may be helpful

in preliminary exploration, but are insecure as a basis for
final interpretation

I explanatory variables not of direct interest, but known to
have a substantial effect, should be included

I several different models may be equally effective
I if there are several potential explanatory variables on an

equal footing, interpretation is particularly difficult

I A two-phase approach:
I First search among a large number of possibilities for a

base for interpretation
I Second check the adequacy of that base
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First phase: a broad strategy
I x∗, required explanatory variables; x̃ some potential further

explanatory variables
I x̃ conceptually prior to x∗

I fit a reduced model with x∗ onlyMred
I fit, if possible, a full model with x∗ and x̃ Mfull
I compare the estimated standard errors of the coefficients

for x∗ under the two models

I if these are of the same order, thenMfull is safer
I if precision improvement underMred seems substantial,

then explore eliminating some of x̃
I for example with backwards elimination

I with emphasis on the effect of x∗
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Second phase: adequacy of the model
I add back selected components of the omitted variables x̃
I to check that conclusions are not changed
I or to report on the differences if they are
I if the model to date has been linear, may be important now

to check some curvature terms, for continuous xs, and
interaction terms for categorical xs

I these provide a ‘warning system’, but not usually direct
interpretation

I interpretation of coefficients, especially in observational
studies, needs care

I example: x includes several measurements of smoking
behaviour: yes/no; years since quitting; no. of cigarettes
smoked; pipe/cigar; etc.

I role of these depends on the goal of the study –
confounder? primary exposure?
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Semiparametric Regression §10.7
I model yj = g(xj) + εj , j = 1, . . . ,n xj scalar

I mean function g(·) assumed to be “smooth”

I introduce a kernel function w(u) and define a set of
weights

wj =
1
h

w
(

xj − x0

h

)
I estimate of g(x), at x = x0:

ĝ(x0) =

∑n
j=1 wjyj∑n
j=1 wj

I Nadaraya-Watson estimator (10.40) – local averaging
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... kernel smoothing
I better estimates can be obtained using local regression at

point x

I

I

β̂ = (X T WX )−1X T Wy

I

ĝ(x0) = β̂0

I usually obtain estimates ĝ(xj), j = 1, . . . ,n
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... kernel smoothing
I odd-order polynomials work better than even; usually local

linear fits are used
I kernel function is often a Gaussian density, or the tricube

function (10.37)
I choice of bandwidth, h controls smoothness of function
I kernel estimators are biased
I larger bandwidth = more smoothing – increases bias,

decreases variance
I some smoothers allows variable bandwidth depending on

density of observations near x0

I ksmooth computes local averages; loess computes local
linear regression (robustified)
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Inference after fitting smooth functions
I β̂ = (X T WX )−1X T Wy

I W = diag(w1, . . . ,wn)

I ĝ(x0) = β̂0 =
∑n

j=1 S(x0; xj ,h)yj

I S(x0; x1,h), . . . ,S(x0; xn,h) first row of “hat” matrix
(X T WX )−1X T W

I E{ĝ(x0)} =
∑n

j=1 S(x0; xj ,h)g(xj)

I var{ĝ(x0)} = σ2∑n
j=1 S(x0; xj ,h)2

I similarly ĝ = (ĝ(x1), . . . , ĝ(xn)) = Shy

I ν1 = tr(Sh), ν2 = tr(ST
h Sh) potential estimates of ‘degrees of

freedom’
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Bias and MSE
I ĝ(x) is biased: E{ĝ(x)} .= 1

2
h2g′′(x)

I

var{ĝ(x)} .= σ2

nhf (x)

∫
w2(u)du

I could choose h to minimize MSE = bias2 + var, at x
I could choose h to minimize integrated MSE

I more usual to use cross-validation

I

CV (h) =
n∑

j=1

{yj − ĝ−j(xj)}2
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... bias and mse
I

CV (h) =
n∑

j=1

{yj − ĝ−j(xj)}2

I

CV (h) =
n∑

j=1

{
yj − ĝ(xj)

1− Sjj(h)

}2

I

GCV (h) =
n∑

j=1

{
yj − ĝ(xj)

1− tr(Sh)/n

}2

I

ĝ(x0) = β̂0 =
n∑

j=1

S(x0; xj ,h)yj

I S(x0; x1,h), . . . ,S(x0; xn,h) is first row of (X TWX )−1X TW
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