Next weeks

» Final Exam: April 11 2:00 — 5:00 pm SS 1085
» 4 questions
» one theory question
one applied question
one question from HW
one question about a study
» one question with computer output
» SM:9.1,9.2.1,9.2.2 (to end p.431), 9.3.1, 9.4.2;
10.1,10.2, 10.3, 10.4, 10.6, 10.7.1 (skip p.529-530),
10.7.2,10.7.3,10.8.1, 10.8.2
(skip log rank test, time-dependent covariates)

» C& D: from slidesonly—Ch 1,2,7.2,7.3,6.5

v Vvyy

» Office Hours: April 8,9, 10;3-5

» HW 4: due April 11
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Today

Model formulation CDCh.6
Regression with survival data
In the news: biomarkers and death; PLOS 1 paper

v

v

v
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April 4: Questions re any HW, re grading, re 2012 final test;
Summary of course notes
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Empirical models CD Ch. 6.5
» in many fields of study the models used as a basis for
interpretation do not have a special subject-matter base

» rather represent broad patterns of haphazard variation
quite widely seen

» this is typically combined with a specification of the
systematic part of the variation

» which is often the primary focus

» modelling then often reduces to a choice of distributional
form

» and of the independence structure of the random
components
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... empirical models CD Ch. 65

>

functional form of the probability distribution sometimes critical, for
example where an implicit assumption is involved of a relationship
between variance and mean: geometric, Poisson, binomial

the simple situations that give rise to binomial, Poisson, geometric,
exponential, normal and log normal are some guide to empirical model
choice in more complex situations

In some specific contexts there is a tradition establishing the form of
model likely to be suitable

illustration: financial time series — Y(t) = log{P(t)/P(t — 1)} has a
long-tailed distribution, small serial correlation, large serial correlation in
Y2(t)

illustration: a common type of response arises as the time from some
clearly defined origin to a critical event

often have a long tail of large values; exponential distribution is a
natural staring point

extensions may be needed, including Weibull, gamma or log-normal
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... empirical models CD Ch. 65

>

often helpful to develop random and systematic parts of
the model separately

models should obey natural or known constraints, even if
these lie outside the range of the data
example P(Y =1) = a + Sx

often use instead log ggjg =a +f'x

however, 3 measures the change in probability per unit
change in x

in many common applications, relationship between y and
several variables xy, . .. Xp is involved

unlikely that the system is wholly linear

» impractical to study nonlinear systems of unknown form

» therefor reasonal to begin with a linear model

» and seek isolated nonlinearities

v
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... empirical models CD Ch. 65

>

often helpful to develop random and systematic parts of
the model separately

naive approach: one random variable per study individual
values for different individuals independent

more realistic: possibility of structure in the random
variation

dependence in time or space, or a hierarchical structure
corresponding to levels of aggregation

ignoring these complications may give misleading
assessments of precision, or bias the conclusions
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... empirical models CD Ch. 65

>

>

example: standard error of mean o//n

but, under mutual correlation, becomes

(o/v/m)(1 + Zpj)'/?

if each observation correlated with k others, at same level,
(o/vV/n)(1 + kp)'/?

1.14 1.26 1.48 1.84
1.18 1.34 1.61 2.05
1.22 1.41 1.73 2.24
1.26 1.48 1.84 2.41
1.30 1.55 1.95 2.57
1.34 1.61 2.05 2.72
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... empirical models CD Ch. 65

» important to be explicit about the unit of analysis

» has a bearing on independence assumptions involved in
model formulation

» example: if all patients in the same clinic receive the same
treatment

» then the clinic is the unit of analysis

» in some contexts there may be a clear hierarchy

» assessment of precision comes primarily from
comparisons between units of analysis

» modelling of variation within units is necessary only if of
intrinsic interest

» when relatively complex responses are collected on each
study individual, the simplest way of condensing these is
through a number of summary descriptive measures

» in other situations it may be necessary to represent
explicitly the different hierarchies of variation
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Principles of
Applied
Statistics




Regression with survival data SM §10.8

v

response y° is time to ‘failure’, or ‘survival time y° > 0
density function f(-), distribution function F(-)

survivor function S(-) =1 — F(+)
hazard function h(-) = f(-)/{S(:)}
cumulative hazard function H(y) = foy h(u)du = —log S(y)

—~—~

parametric models: exponential, Weibull, Gamma,
log-normal, log-logistic SM §5.4

random censoring: C ~ G(-), independently of Y©
observe (y;,dj),j=1,...,n

yj =min(y?, ), d =1y <g)
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... regression with survival data SM §10.8
» data (y;, d;, x;),j =1,...,n; x; explanatory variables

» survivor S(+; x, ), density f(; x, 3), hazard h(-; x, 3)

» log-likelihood

n
((B;y,d) = {djlog h(y;; x;, B) — H(y;: x;, 8)}
j=1
A SM (5.26)
» maximum likelihood estimates 5
observed information function —¢”(5)

» residuals A
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Example 10.36

542 10 - Nonlinear Regression Models

Table 1022 Survival

Group 1 Group 2 times y (weeks) for two
groups of acute leukaemia

patients, together with

* Y * Y * Y * Y x = logy white blood cell
count at time of diagnosis
1 336 65 10 385 143 18 364 56 27 445 3 (Feigl and Zelen, 1965).
2 288 156 11 397 56 19 348 65 28 449 8 Paue-t:;n group 1 had
3 363 100 12 451 26 20 360 17 29 441 4 :;z:ﬁ'm:l‘;m:mﬂ of
4 341 134 13 454 22 21 318 7 30 432 3 the leukaemic cells in the
5 378 16 14 500 1 22395 16 31 490 30 bone marrow at the time
6 402 108 15 500 1 23 372 22 32 500 4 of diagnosis; those in
7400 121 16 472 5 24 400 3 33 500 43 group 2 did not.
8 423 4 17 500 65 25 428 4
9 373 39 26 443 2
- o 1 Figure 10.21  Plots of
o ) data and fitted means for
_ _ generalized linear (left)
2 2 and generalized additive
$ o S’; o (right) models fitted to
= = two groups of survival
@ > times for leukaemia
E E patients: group 1 (solid);
> b group 2 (dashed).
£s fs
s Gl
w 18
o o
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... example 10.36

> library (SMPracticals)
> library (survival)
> data (leuk)
> head (leuk)
wbc ag time
1 2300 present 65
2 750 present 156
3 4300 present 100
4 2600 present 134
5 6000 present 16
6 10500 present 108
> with(leuk,1logl0(wbc[1:5]))

[1] 3.361728 2.875061 3.633468 3.414973 3.778151
leuk.glm <- glm(time ~ ag + loglO(wbc), data = leuk, family = Gamma (link = "log"))
> summary (leuk.glm, dispersion = 1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.8154 1.2932 4.497 6.89e-06 xxx
agpresent 1.0176 0.3492 2.914 0.00357 =%
1ogl0 (wbc) -0.7009 0.3036 -2.308 0.02097 «*

(Dispersion parameter for Gamma family taken to be 1)

Null deviance: 58.138 on 32 degrees of freedom
Residual deviance: 40.319 on 30 degrees of freedom

> summary (leuk.glm)

(Dispersion parameter for Gamma family taken to be 1.087715)
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... example 10.36

> leuk.surv <- survreg(Surv(time, rep(l,length(time))) ~ loglO(wbc) + ag, data = leuk, dist=
> summary (leuk.surv)

Call:
survreg (formula = Surv(time, rep(l, length(time))) ~ loglO(wbc) +
ag, data = leuk, dist = "exponential"
Value Std. Error z P
(Intercept) 5.815 1.263 4.60 4.15e-06
1ogl0 (wbc) -0.701 0.286 -2.45 1.44e-02
agpresent 1.018 0.364 2.80 5.14e-03

Scale fixed at 1

> leuk.surv2 <- survreg(Surv(time,rep(l,length(time))) "pspline(logl0 (wbc),df=0) + ag,
+ data = leuk, dist= "exponential" )

## see help file for survreg

> leuk.gam <- gam(time ~ s(loglO(wbc)) + ag, data = leuk, family = Gamma(link = "log") )
> summary (leuk.gam, dispersion = 1)

Parametric coefficients:

Estimate Std. Error z value Pr(>|z]|)
(Intercept) 2.7270 0.2524 10.80 < 2e-16 *xx
agpresent 1.1424 0.3547 3.22 0.00128 #*x

Approximate significance of smooth terms:
edf Ref.df Chi.sqg p-value
s(loglO(wbc)) 3.236 3.967 14.59 0.00553 *x
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Proportional hazards model
» hazard function h(y; x, ) = ho(y) exp(x"3)

» survivor function S(y; x, 8) = So(y)eP*'#)

> log-likelihood Y74 {dx"8 + log ho(y;) — Ho(y;) exp(x'B)}
» partial likelihood

n T d]
Loart(B) = H { exp(Xj ) ) }

» derived in SM §10.8 as profile likelihood, treating
ho(y1), - -, ho(yn) as n nuisance parameters

> R;risk set at time y;-

» all observations available to fail just before the time of the
jth failure

» adjustments for ties, see p.544
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... proportional hazards model

» estimation of the hazard function and survival probability

Flo(}’) = Z il

>

Probability
00 02 04 06 08 10

d.
1— (N
j:yjlgy < ZieRj exp(XiT/B)>

0 1000 2000 3000 4000

Survival time (days)
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... example 10.36

> leuk.ph <- coxph(Surv(time,rep(1l,length(time)))” ag + loglO(wbc) , data = leuk)
> summary (leuk.ph)

coef exp(coef) se(coef) z Pr(>|z])
agpresent -1.0691 0.3433 0.4293 -2.490 0.01276 =«
1logl0 (wbc) 0.8467 2.3318 0.3132 2.703 0.00687 **

Signif. codes: 0 ‘s%x’ 0.001 ‘xx’ 0.01 '+’ 0.05 .7 0.1 " 1

exp (coef) exp(-coef) lower .95 upper .95

agpresent 0.3433 2.9126 0.148 0.7964
1logl0 (wbc) 2.3318 0.4288 1.262 4.3083
> leuk.ph2 <- coxph(Surv(time, rep(l,length(time)))” ag + loglO(wbc) ,

+ ties="breslow", data = leuk)
> summary (leuk.ph2)

coef exp(coef) se(coef) z Pr(>|z])
agpresent -1.0176 0.3614 0.4235 -2.403 0.01626 =*
1logl0 (wbc) 0.8296 2.2924 0.3120 2.659 0.00785 **

> plot (survfit (leuk.ph))
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Kaplan-Meier estimation of S(-)

» nonparametric estimation of survivor function
» censored data analogue of empirical cumulative
distribution function

- (1-4)

iyi<y

v

with grouped data:
» d; number of items failing at time y;

with continuous data

v
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Figure 10.22 PBC data
analysis (Fleming and
Harrington, 1991). Top
left: product-limit
estimates for control
(solid) and treatment
(dots) groups. Top right:
estimates of baseline
survivor function for data
stratified by sex, men
(dots), women (solid). The
heavy line shows the
unstratified estimate
Lower left: profile
likelihood for Box—Cox
transformations of
bilirubin (solid), albumin
(dots), and prothrombin
time (dashes); the
horizontal line indicates
95% confidence limits for
the transformation
parameter. Lower right:
martingale residuals from
the model with terms age,
log(alb), edtrt,
log(protime) against
log bilirubin, and lowess
smooth with p = 2/3.



Biomarkers and survival time

> News report (LA Times, Feb 28/14): “A blood test to predict imminent
death? Would you want to take it?

> “the study suggests that several potentially deadly conditions — cancer,
cardiovascular disease and a welter of non-vascular causes of death —
may share signs, and even origins, that have been hidden in plain sight”

» “That said, a blood test to predict death is far from ready for prime time.”

> “They ran the carefully collected blood samples of 9,482 Estonians
between the age of 18 and 101 through a scan that used nuclear
magnetic resonance spectroscopy, to make measurements of the 106
biomarker candidates in each”

» “Over a median follow-up period of just over five years, 508 of the
randomly chosen Estonian subjects died of various causes. The study’s
authors compared the biomarker levels of both groups in an effort to
identify those that were more common in the dead and less common in
the living.”

> “The researchers then repeated their test of biomarkers on a separate
population—8,444 Finnish men and women between 24 and 74. The
biomarkers were equally predictive of death in this ‘validation group.””
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plos.org create account m
'_@'.PLOS|MsmcmE Browse = ForAuthors AboutUs  Search o

advanced search

{§ OPENACCESS | PEERREVIEWED 65,042 35 249

RESEARCH ARTICLE VIEWS SAVES SHARES

Biomarker Profiling by Nuclear Magnetic Resonance Spectroscopy for the
Prediction of All-Cause Mortality: An Observational Study of 17,345 Persons

Krista Fischer B B, Johannes Kettunen B Peter Wiirtz B3 [E], Toomas Haller, Aki 8. Havulinna, Antti J. Kangas, Pasi Soininen, Tnu Esko,
Mari-Liis Tammesoo, Reedik Mégi, Steven Smit, Aarno Palotie, Samuli Ripatti, [ ... ], Andres Metspalu [, [ view all ]

Published: February 25, 2014 « DOI: 10.1371/journal.pmed. 1001606

n-“ o T o

link


http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1001606#references

Study populations

>

-~

“In this observational study, two population-based cohorts
in Estonia and Finland were followed for all-cause mortality
via population registries”

“The Estonian Biobank cohort included 50,715 individuals
aged 18 — 103 y at recruitment (Oct 2002 — Feb 2011)
“Biomarker profiling was conducted by NRM spectroscopy
... for a random subset of 9,842 individuals”

“According to linkage with the Estonian population registry,
508 study participants had died during follow-up as of 1
June 2013’

“The FINRISK 1997 study is a general population study ...
persons aged 24 — 74 y”

“In total, 8.444 individuals were recruited; biomarker
profiling by NMR spectroscopy .. for 7,503 individuals”

“... analyses in the validation cohort were confined to the
first 5y of follow-up; 176 ... died ”

Eigured
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Voluntary sampling population-wide

Estonian Biobank Cohort
Biomarker discovery

Age 18-103 (2020-2010)
n=50,715

Plasma samples; Random subset of n=9,842;

Excluded: 38 pregnant, 78 missing biomarkers

508 deaths during median 5.4-year follow-up

(Table 1)

)

Candidate biomarker associations
with the all-cause mortality
Stepwise selection (Fig 2)

i

Biomarker associations adjusted
for established risk factors
(Fig 3A and 3B)

i

)

FINRISK 1997
Replication and validation
Five representative areas across Finland

Large population-based ! Working age population 24-74 in 1997

cohorts in Northern Europe |

Biomarker associ

for cardiovascular death, cancer death,

and other cause

iations separately

Derivation of risk prediction score
for all-cause mortality
mortality (Fig 3C) in the age range 25-74 (Table 2)

n=8,444 I
L e e = = 1. ______ 4
Biomarker profiling by Serum samples; n=7,503 with blood available
high-throughput NMR Excluded: 78 pregnant, 21 missing data
of non-fasting blood samples 176 deaths during 5-year follow-up
106 circulating biomarkers (Table 1)
Discovery of 4 biomarkers
predictive of all-cause mortality
in general population settings
. . R of multivariate iations of
Adjustment for established the 4 biomarkers for all-cause mortality
risk factors and replication adjusted for established risk factors
(Fig 3A and 3B)
Assessment of incremental prediction Biomarker associations separately
deriv:gll ;:Sol:npgﬁgléggr;;c:;ibank for cardiovascular death, cancer death,
(Table 3 and Figure 6) and other cause mortality (Fig 3C)

Cumulative probability of death
during 5-year follow-up stratified by
the biomarker summary score
(Figure 5)

Sensitivity analyses:
Adjustment for additional
potential confounders
(Figure S5)




Statistical analysis
» all biomarker concentrations were scaled to standard
deviation units

» Cox proportional hazards models were used to assess the
association of each candidate biomarker with the risk of
all-cause mortality

» age at blood sampling was used as the time scale

» first, the biomarker leading to the smallest p-value in the
Cox model adjusted for age and sex only was included

» subsequently, the biomarker leading to the smallest
p-value in the model adjusted for age, sex and the first
biomarker was included

» the process was repeated until no additional biomarkers
were significant ... p < 0.0005

» Figure 1
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... Statistical analysis

» the hazard ratios of the four identified biomarkers for
all-cause mortality were subsequently examined in a
multivariate model adjusted for age, sex, and conventional
risk factors that were significant predictors of mortality in
the Estonian Biobank cohort: high-density lipoprotein
(HDL) cholesterol, current smoking, prevalent diabetes,
prevalent cardiovascular disease, and prevalent cancer
(Model A)

» Proportional hazards assumptions of the regression
models were confirmed by Schoenfeld’s test. cox. zph
MASS, CH.13

» Figure 3
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Alpha-1-acid Albumin VLDL particle size Citrate Biomarker
glycoprotein summary score
A P=5x10"%! p=2x10"18 P=3x10""2 P=5x10""0 p=2x10"%
1.67 0.70 0.69 1.33 1.75
Death from
all causes _o_.__ _.__o_ ® _0:._ _o_'.'
(508/176) 1.55 0.79 0.79 1.15 1.49
P=gx10~8 P=0.003 P=0.01 P=0.06 P=2x108
B P=5x10"2 P=7x10719 P=3x10"° P=4x10710 P=2x107%"
Death from 1.64 0.69 0.67 1.35 1.78
all causes —0— to_ - _o_. _o_-.-
(508/157) 152 0.78 0.79 1.20 150
p=7x10"% P=0.004 P=0.03 P=0.02 P=2x10""
Cc P=6x10 "4 P=4x10 11 P=1x10"6 P=4x107% P=9x10731
Death from 1.66 0.67 0.68 145 1.83
Cardiovascular O+ —— o 0 —— ——
Causes
1.39 0.86 0.70 1.04 1.34
(241/50)t P=0.03 P=0.30 P=0.06 P=0.77 P=0.02
pP=4x10""" P=0.01 P=5x1078 P=0.002 p=2x10"20
Death from 1.85 0.83 0.63 1.31 1.72
Cancer Causes —O0— —0— - ——0— —O0—
(151/67)f 1.60 0.90 0.78 1.14 1.43
P=0.0002 P=0.40 P=0.10 P=0.27 P=0.002
P=0.0006 P=1x10 14 P=0.004 P=0.009 p=2x10"%2
Death from 1.51 0.47 0.66 1.35 2.21
Other Causes —— — —— —0—
(74149) —O0— i —o— —O0—
1.57 0.61 . 1.37 1.86
P=0.008 P=0.0002 P=0.11 P=0.02 P=4x1076
1.00 1.50 2.00 0.50 0.80 1.00 0.50 0.80 1.00 1.00 1.50 2.00 1.00 1.50 2.00 2.50
Hazard Ratio Hazard Ratio Hazard Ratio Hazard Ratio Hazard Ratio
(95% CI) (95% Cl) (95% Cl) (95% Cl) (95% Cl)

@ Estonian Biobank O FINRISK




... Statistical analysis

>

>

A biomarker summary score was derived by adding the
concentrations of the biomarkers weighted by the
regression coefficients (natural logarithm of HR) observed
in Model A

BiX1i + PaXoi + BaXai + BaXaj

Scatter plots of age versus the biomarker score were
constructed for men and women, and the associations
were examined by third degree polynomial regression fits
The biomarker score was moderately correlated with age (r
= 0.38), yet extreme biomarker score values were seen
across all age groups.

Excess mortality within 5 y of follow-up was observed for
higher age, but in particular in combination with an
elevated biomarker score

Figure 4
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Biomarker summary score [SD|
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... Statistical analysis

» To illustrate the strong association of the biomarker
summary score in the Estonian Biobank cohort, the
cumulative probability of death was derived across
quintiles of the biomarker score

» The 5-y mortality for persons with a biomarker score within
the highest quintile was 19 times higher than for those in
the lowest quintile (288 versus 15 deaths during 5y,
corresponding to 15.3% versus 0.8%).

» Individuals within the highest quintile were further
differentiated in terms of their short-term probability of
dying according to their biomarker score percentiles

» Figure 5
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Risk score validation

» risk prediction scores for all-cause mortality with and
without the biomarkers were derived in the Estonian
Biobank cohort and evaluated in the FINRISK validation
cohort

» the regression coefficients used for calculating the two risk
scores are listed in Table 2.

» Risk discrimination was significantly improved by including
the biomarkers in the risk prediction

» The discrimination curves are illustrated in Figure 6.

STA 2201: Applied Statistics I March 28, 2014

35/40



Variable Prediction Model without Biomarkers Prediction Model with Biomarkers

HR 95% CI p-Value HR 95% CI p-Value
Female gender 0.67 0.50-0.90 0.009 0.60 0.44-0.81 0.0008
Body mass index® 1.05 0.91-1.21 0.52 1.05 0.92-1.20 0.48
Systolic blood pressure® 0.96 0.85-1.09 0.51 1.04 0.92-1.18 0.55
Fasting duration (hours) 0.99 0.96-1.02 047 1.00 0.97-1.03 0.96
Total cholesterol® 1.05 0.91-1.21 0.50 115 0.97-1.36 0.1
HDL-cholesterol® 0.81 0.69-0.95 0.01 1.07 0.92-1.24 0.37
Triglycerides® 0.82 0.70-0.96 0.01 0.93 0.71-1.21 0.60
Creatinine® 1.10 1.03-1.18 0.005 1.04 0.96-1.12 0.31
Current smoking 1.86 1.26-2.75 0.002 1.56 1.05-2.33 0.03
Smoking duration (years)® 1.21 1.04-1.41 0.01 1.25 1.07-1.46 0.005
Cigarettes per day® 0.93 0.80-1.07 0.29 0.89 0.77-1.03 0.11
Alcohol® 1.09 0.98-1.21 0.11 1.04 0.94-1.16 043
Prevalent diabetes 1.58 1.15-2.15 0.004 1.49 1.09-2.03 0.01
Prevalent cardiovascular 1.38 1.05-1.82 0.02 1.42 1.08-1.87 0.01
disease
Prevalent cancer 215 151-3.05 2x107° 2.26 1.59-3.20 5x107°
Alpha-1-acid glycoprotein® ~ — — — 1.76 1.57-1.97 9x10™%
Albumin® — — — 0.66 0.59-0.73 4x107"%
VLDL particle size® — — — 0.74 0.58-0.94 0.01
Citrate® - - - 147 1.29-1.67 5x107°

Hazard ratios for all-cause mortality derived in the Estonian Biobank cohort in the age range matching the FINRISK cohort (25-74 y). The regression coeffients (natural
logarithm of the HRs) from the Estonian Biobank cohort were used to derive two risk scores for the prediction of all-cause mortality: a reference risk score without
biomarkers and a risk score including the four novel biomarkers. The two risk prediction scores were used to calculate the absolute risk estimates in the FINRISK cohort,
and the incremental predictive utility of adding the four biomarkers to the risk prediction score was evaluated.

2Continuous variables were scaled to risk estimate per 1-SD increment in the variable.

doi:10.1371/journal.pmed.1001606.t002
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Figure 2 ROC results for the lipidomics
analyses. (a—c) Plots of ROC results from
the models derived from the three phases

of the lipidomics analysis. Simple logistic
models using only the metabolites identified
in each phase of the lipidomics analysis
were developed and applied to determine
the success of the models for classifying the
Cpre and NC groups. The red line in each
plot represents the AUC obtained from the
discovery-phase LASSO analysis (a), the
targeted analysis of the ten metabolites in
the discovery phase (b) and the application
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of the ten-metabolite panel developed from the targeted discovery phase in the independent validation phase (c). The ROC plots represent sensitivity
(i.e., true positive rate) versus 1 — specificity (i.e., false positive rate).



