
Next weeks
I Final Exam: April 11 2:00 – 5:00 pm SS 1085

I 4 questions
I one theory question
I one applied question
I one question from HW
I one question about a study
I one question with computer output

I SM: 9.1, 9.2.1, 9.2.2 (to end p.431), 9.3.1, 9.4.2;
10.1, 10.2, 10.3, 10.4, 10.6, 10.7.1 (skip p.529-530),
10.7.2, 10.7.3, 10.8.1, 10.8.2
(skip log rank test, time-dependent covariates)

I C& D: from slides only – Ch 1, 2, 7.2, 7.3, 6.5

I Office Hours: April 8, 9, 10; 3 – 5

I HW 4: due April 11
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Today
I Model formulation CD Ch. 6

I Regression with survival data
I In the news: biomarkers and death; PLOS 1 paper

I April 4: Questions re any HW, re grading, re 2012 final test;
Summary of course notes
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Empirical models CD Ch. 6.5

I in many fields of study the models used as a basis for
interpretation do not have a special subject-matter base

I rather represent broad patterns of haphazard variation
quite widely seen

I this is typically combined with a specification of the
systematic part of the variation

I which is often the primary focus
I modelling then often reduces to a choice of distributional

form
I and of the independence structure of the random

components
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... empirical models CD Ch. 6.5

I functional form of the probability distribution sometimes critical, for
example where an implicit assumption is involved of a relationship
between variance and mean: geometric, Poisson, binomial

I the simple situations that give rise to binomial, Poisson, geometric,
exponential, normal and log normal are some guide to empirical model
choice in more complex situations

I In some specific contexts there is a tradition establishing the form of
model likely to be suitable

I illustration: financial time series – Y (t) = log{P(t)/P(t − 1)} has a
long-tailed distribution, small serial correlation, large serial correlation in
Y 2(t)

I illustration: a common type of response arises as the time from some
clearly defined origin to a critical event

I often have a long tail of large values; exponential distribution is a
natural staring point

I extensions may be needed, including Weibull, gamma or log-normal
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... empirical models CD Ch. 6.5

I often helpful to develop random and systematic parts of
the model separately

I models should obey natural or known constraints, even if
these lie outside the range of the data

I example P(Y = 1) = α + βx
I often use instead log P(Y=1)

P(Y=0) = α′ + β′x
I however, β measures the change in probability per unit

change in x
I in many common applications, relationship between y and

several variables x1, . . . xp is involved
I unlikely that the system is wholly linear
I impractical to study nonlinear systems of unknown form
I therefor reasonal to begin with a linear model
I and seek isolated nonlinearities
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... empirical models CD Ch. 6.5

I often helpful to develop random and systematic parts of
the model separately

I naive approach: one random variable per study individual
I values for different individuals independent
I more realistic: possibility of structure in the random

variation
I dependence in time or space, or a hierarchical structure

corresponding to levels of aggregation
I ignoring these complications may give misleading

assessments of precision, or bias the conclusions
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... empirical models CD Ch. 6.5

I example: standard error of mean σ/
√

n
I but, under mutual correlation, becomes

(σ/
√

n)(1 + Σρij)
1/2

I if each observation correlated with k others, at same level,
(σ/
√

n)(1 + kρ)1/2

I 0.1 0.2 0.4 0.8
--------------------------
1.14 1.26 1.48 1.84
1.18 1.34 1.61 2.05
1.22 1.41 1.73 2.24
1.26 1.48 1.84 2.41
1.30 1.55 1.95 2.57
1.34 1.61 2.05 2.72
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... empirical models CD Ch. 6.5

I important to be explicit about the unit of analysis
I has a bearing on independence assumptions involved in

model formulation
I example: if all patients in the same clinic receive the same

treatment
I then the clinic is the unit of analysis
I in some contexts there may be a clear hierarchy
I assessment of precision comes primarily from

comparisons between units of analysis
I modelling of variation within units is necessary only if of

intrinsic interest
I when relatively complex responses are collected on each

study individual, the simplest way of condensing these is
through a number of summary descriptive measures

I in other situations it may be necessary to represent
explicitly the different hierarchies of variation
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Regression with survival data SM §10.8

I response y0 is time to ‘failure’, or ‘survival’ time y0 ≥ 0
I density function f (·), distribution function F (·)

I survivor function S(·) = 1− F (·)
I hazard function h(·) = f (·)/{S(·)}
I cumulative hazard function H(y) =

∫ y
0 h(u)du = − log S(y)

I parametric models: exponential, Weibull, Gamma,
log-normal, log-logistic SM §5.4

I random censoring: C ∼ G(·), independently of Y 0

I observe (yj ,dj), j = 1, . . . ,n

I yj = min(y0
j , cj), dj = 1(y0

j ≤ cj)
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... regression with survival data SM §10.8

I yj = min(y0
j , cj), dj = 1(y0

j ≤ cj)
I data (yj ,dj , xj), j = 1, . . . ,n; xj explanatory variables

I survivor S(·; x , β), density f (·; x , β), hazard h(·; x , β)

I log-likelihood

`(β; y ,d) =
n∑

j=1

{dj log h(yj ; xj , β)− H(yj ; xj , β)}

SM (5.26)
I maximum likelihood estimates β̂

observed information function −`′′(β̂)

I residuals
rj = H(yj ; xj , β̂) + 1− dj
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Example 10.36
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... example 10.36
> library(SMPracticals)
> library(survival)
> data(leuk)
> head(leuk)

wbc ag time
1 2300 present 65
2 750 present 156
3 4300 present 100
4 2600 present 134
5 6000 present 16
6 10500 present 108
> with(leuk,log10(wbc[1:5]))
[1] 3.361728 2.875061 3.633468 3.414973 3.778151
leuk.glm <- glm(time ˜ ag + log10(wbc), data = leuk, family = Gamma(link = "log"))
> summary(leuk.glm, dispersion = 1)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 5.8154 1.2932 4.497 6.89e-06 ***
agpresent 1.0176 0.3492 2.914 0.00357 **
log10(wbc) -0.7009 0.3036 -2.308 0.02097 *
---

(Dispersion parameter for Gamma family taken to be 1)

Null deviance: 58.138 on 32 degrees of freedom
Residual deviance: 40.319 on 30 degrees of freedom

> summary(leuk.glm)
...
(Dispersion parameter for Gamma family taken to be 1.087715)
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... example 10.36
> leuk.surv <- survreg(Surv(time, rep(1,length(time))) ˜ log10(wbc) + ag, data = leuk, dist= "exponential")
> summary(leuk.surv)

Call:
survreg(formula = Surv(time, rep(1, length(time))) ˜ log10(wbc) +

ag, data = leuk, dist = "exponential")
Value Std. Error z p

(Intercept) 5.815 1.263 4.60 4.15e-06
log10(wbc) -0.701 0.286 -2.45 1.44e-02
agpresent 1.018 0.364 2.80 5.14e-03

Scale fixed at 1

> leuk.surv2 <- survreg(Surv(time,rep(1,length(time)))˜pspline(log10(wbc),df=0) + ag,
+ data = leuk, dist= "exponential" )

## see help file for survreg

> leuk.gam <- gam(time ˜ s(log10(wbc)) + ag, data = leuk, family = Gamma(link = "log") )
> summary(leuk.gam, dispersion = 1)
...
Parametric coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 2.7270 0.2524 10.80 < 2e-16 ***
agpresent 1.1424 0.3547 3.22 0.00128 **
...
Approximate significance of smooth terms:

edf Ref.df Chi.sq p-value
s(log10(wbc)) 3.236 3.967 14.59 0.00553 **
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Proportional hazards model
I hazard function h(y ; x , β) = h0(y) exp(xTβ)

I survivor function S(y ; x , β) = S0(y)exp(xTβ)

I log-likelihood
∑n

j=1{djxT
j β + log h0(yj)− H0(yj) exp(xT

j β)}
I partial likelihood

Lpart(β) =
n∏

j=1

{
exp(xT

j β)∑
i∈Rj

exp(xT
i β)

}dj

I derived in SM §10.8 as profile likelihood, treating
h0(y1), . . . ,h0(yn) as n nuisance parameters

I Rj risk set at time y−j
I all observations available to fail just before the time of the

j th failure
I adjustments for ties, see p.544

STA 2201: Applied Statistics II March 28, 2014 18/40



... proportional hazards model
I estimation of the hazard function and survival probability
I

Ĥ0(y) =
∑

j:yj≤y

dj∑
i∈Rj

exp(xT
i β̂)

I

Ŝ0(y) =
∏

j:yj≤y

(
1−

dj∑
i∈Rj

exp(xT
i β̂)

)
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... example 10.36

> leuk.ph <- coxph(Surv(time,rep(1,length(time)))˜ ag + log10(wbc) , data = leuk)
> summary(leuk.ph)
...

coef exp(coef) se(coef) z Pr(>|z|)
agpresent -1.0691 0.3433 0.4293 -2.490 0.01276 *
log10(wbc) 0.8467 2.3318 0.3132 2.703 0.00687 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

exp(coef) exp(-coef) lower .95 upper .95
agpresent 0.3433 2.9126 0.148 0.7964
log10(wbc) 2.3318 0.4288 1.262 4.3083

> leuk.ph2 <- coxph(Surv(time,rep(1,length(time)))˜ ag + log10(wbc) ,
+ ties="breslow", data = leuk)
> summary(leuk.ph2)
...

coef exp(coef) se(coef) z Pr(>|z|)
agpresent -1.0176 0.3614 0.4235 -2.403 0.01626 *
log10(wbc) 0.8296 2.2924 0.3120 2.659 0.00785 **
---

> plot(survfit(leuk.ph))
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Kaplan-Meier estimation of S(·)
I nonparametric estimation of survivor function
I censored data analogue of empirical cumulative

distribution function
I

Ŝ(y) =
∏

i:yi≤y

(
1− di

ri

)
I with grouped data:

I di number of items failing at time yi

I with continuous data

Ŝ(y) =
∏

i:yi≤y

(
1− 1

ri

)di

I

v̂ar{log Ŝ(y)} =
∑

i:yi≤y

di

ri(ri − di)
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Biomarkers and survival time
I News report (LA Times, Feb 28/14): “A blood test to predict imminent

death? Would you want to take it?
I “the study suggests that several potentially deadly conditions – cancer,

cardiovascular disease and a welter of non-vascular causes of death –
may share signs, and even origins, that have been hidden in plain sight”

I “That said, a blood test to predict death is far from ready for prime time.”
I “They ran the carefully collected blood samples of 9,482 Estonians

between the age of 18 and 101 through a scan that used nuclear
magnetic resonance spectroscopy, to make measurements of the 106
biomarker candidates in each”

I “Over a median follow-up period of just over five years, 508 of the
randomly chosen Estonian subjects died of various causes. The study’s
authors compared the biomarker levels of both groups in an effort to
identify those that were more common in the dead and less common in
the living.”

I “The researchers then repeated their test of biomarkers on a separate
population–8,444 Finnish men and women between 24 and 74. The
biomarkers were equally predictive of death in this ‘validation group.’ ”
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link

http://www.plosmedicine.org/article/info%3Adoi%2F10.1371%2Fjournal.pmed.1001606#references


Study populations
I “In this observational study, two population-based cohorts

in Estonia and Finland were followed for all-cause mortality
via population registries”

I “The Estonian Biobank cohort included 50,715 individuals
aged 18 – 103 y at recruitment (Oct 2002 – Feb 2011)

I “Biomarker profiling was conducted by NRM spectroscopy
... for a random subset of 9,842 individuals”

I “According to linkage with the Estonian population registry,
508 study participants had died during follow-up as of 1
June 2013.”

I “The FINRISK 1997 study is a general population study ...
persons aged 24 – 74 y”

I “In total, 8.444 individuals were recruited; biomarker
profiling by NMR spectroscopy .. for 7,503 individuals”

I “... analyses in the validation cohort were confined to the
first 5 y of follow-up; 176 ... died ”

I Figure 1
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Statistical analysis
I all biomarker concentrations were scaled to standard

deviation units
I Cox proportional hazards models were used to assess the

association of each candidate biomarker with the risk of
all-cause mortality

I age at blood sampling was used as the time scale
I first, the biomarker leading to the smallest p-value in the

Cox model adjusted for age and sex only was included
I subsequently, the biomarker leading to the smallest

p-value in the model adjusted for age, sex and the first
biomarker was included

I the process was repeated until no additional biomarkers
were significant ... p < 0.0005

I Figure 1
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... statistical analysis
I the hazard ratios of the four identified biomarkers for

all-cause mortality were subsequently examined in a
multivariate model adjusted for age, sex, and conventional
risk factors that were significant predictors of mortality in
the Estonian Biobank cohort: high-density lipoprotein
(HDL) cholesterol, current smoking, prevalent diabetes,
prevalent cardiovascular disease, and prevalent cancer
(Model A)

I Proportional hazards assumptions of the regression
models were confirmed by Schoenfeld’s test. cox.zph
MASS, CH.13

I Figure 3
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... statistical analysis
I A biomarker summary score was derived by adding the

concentrations of the biomarkers weighted by the
regression coefficients (natural logarithm of HR) observed
in Model A

I β̂1x1i + β̂2x2i + β̂3x3i + β̂4x4i

I Scatter plots of age versus the biomarker score were
constructed for men and women, and the associations
were examined by third degree polynomial regression fits

I The biomarker score was moderately correlated with age (r
= 0.38), yet extreme biomarker score values were seen
across all age groups.

I Excess mortality within 5 y of follow-up was observed for
higher age, but in particular in combination with an
elevated biomarker score

I Figure 4

STA 2201: Applied Statistics II March 28, 2014 31/40





... statistical analysis
I To illustrate the strong association of the biomarker

summary score in the Estonian Biobank cohort, the
cumulative probability of death was derived across
quintiles of the biomarker score

I The 5-y mortality for persons with a biomarker score within
the highest quintile was 19 times higher than for those in
the lowest quintile (288 versus 15 deaths during 5 y,
corresponding to 15.3% versus 0.8%).

I Individuals within the highest quintile were further
differentiated in terms of their short-term probability of
dying according to their biomarker score percentiles

I Figure 5
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Risk score validation
I risk prediction scores for all-cause mortality with and

without the biomarkers were derived in the Estonian
Biobank cohort and evaluated in the FINRISK validation
cohort

I the regression coefficients used for calculating the two risk
scores are listed in Table 2.

I Risk discrimination was significantly improved by including
the biomarkers in the risk prediction

I The discrimination curves are illustrated in Figure 6.
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