
Today
I HW 4: due April 11

I Final Exam: April 11 2:00 – 5:00 pm SS 1085
I in the news
I semi-parametric regression

I March 28: §10.8; proportional hazards regression
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In the News
Globe and Mail March 17
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http://www.theglobeandmail.com/news/national/how-losing-18000-people-made-manitoba-100-million-poorer/article17515050/


Smoothing regressions?
I kernel smoothers fit locally weighted polynomials, using a

kernel function as weights
I in R can use ksmooth (base) or sm.regression in
library(sm)

I a more robust version is implemented in loess (base)
I kernel smoothing useful for graphical summaries, for

exploring effect of bandwidth, for single explanatory
variable

I refinements (in addition to loess), include adaptive
bandwidth, running medians, running M-estimates
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... smoothing regressions
I regression splines use a set of basis functions, and fit

E(y | x) =
∑M

m=1 βmhm(x)

I natural splines and B-splines are popular choices
I once the basis functions are chosen, fitting is by lm or glm
I you choose the number of basis functions for each

explanatory variable
I implemented in R in ns(x, df = 4) and
bs(x, df = 4)

I generalizations include different types of basis functions,
e.g. Fourier basis (sine and cosine)
e.g. wavelet basis (good for extracting local behaviour)

I standard errors are computed by the usual methods
for lm and glm
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... wavelets

Vidaković and Mueller, ”Wavelets for kids (Part I)” 1994.
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http://gtwavelet.bme.gatech.edu/wp/kidsA.pdf


... smoothing regressions
I cubic smoothing splines put knots at each observations
I and shrink coefficients βm by regularization

I popular because they provide smooth fits
I popular because they are “optimal”:
I

min
g

n∑
j=1

{y − g(tj)}2 − λ
∫ b

a
{g′′(t)}2dt , , λ > 0

I has an explicit, finite-dimensional solution:

min
g

(y − g)T (y − g) + λgT K g

I g = {g(x1), . . . ,g(xn)}
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... smoothing regressions
I gam in library(gam) fits cubic smoothing splines

Hastie, Tibshirani & Friedman, Ch. 5

I gam in library(mgcv) fits penalized regression splines
Wood, 2001

I see also help files for gam(mvcv)

I estimation of standard errors is more straightforward in
gam(mvcv)

I excellent explanation in Appendix A of
Peng R., Dominici F., Louis T., (2006) JRSS A, 169, 179-203
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... smoothing regressions
I generalized to several explanatory variables by smoothing

each variable separately

I generalized to likelihood methods by replacing∑
{yj − g(xj)}2 by

∑
log f{yj ; ηj}

I ηj = g(xj) or
ηj = g1(x1j) + g2(x2j) + · · ·+ gp(xpj) or
ηj = xT

j β + g(tj)

I last is used in §10.7.3 for spring barley data:

yvb = gb(tvb) + βv + εvb

I allow block effects to depend on location (tvb)
in a ‘smooth’ way

STA 2201: Applied Statistics II March 21, 2014 8/31









Multidimensional splines
I so far we are considering just 1 X at a time
I for regression splines we replace each X by the new

columns of the basis matrix
I for smoothing splines we get a univariate regression

I it is possible to construct smoothing splines for two or more
inputs simultaneously, but computational
difficulty increases rapidly

I these are called thin plate splines

I implemented in gam(mgcv) as bs = "tp"
in s(x1,x2, ...)
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Which smoothing method?
I basis functions: natural splines, Fourier, wavelet bases
I regularization via cubic smoothing splines
I kernel smoothers: locally constant/linear/polynomial
I Faraway (2006) Extending the Linear Model:

I with very little noise, a small amount of local smoothing
I with moderate amounts of noise, kernel and spline methods

are effective
I with large amounts of noise, parametric methods are more

attractive
I “It is not reasonable to claim that any one smoother is

better than the rest”
I loess is robust to outliers, and provides smooth fits
I spline smoothers are more efficient, but potentially sensitive

to outliers
I kernel smoothers are very sensitive to bandwidth
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Example: health effects of air pollution
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The NMMAPS studies
I 90 largest cities in US by population (US Census)
I daily mortality counts from National Center for Health

Statistics 1987–1994
I hourly temperature and dewpoint data from National

Climatic data Center
I data on pollutants PM10, O3, CO, SO2, NO2 from EPA
I response: Yt number of deaths on day t
I explanatory variables: Xt pollution on day t − 1, plus

various confounders: age and size of population, weather,
day of the week, time

I mortality rates change with season, weather, changes in
health status, ...

Peng R., Dominici F., Louis T., (2006) JRSS A, 169, 179-203
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... the NMMAPS studies
I Yt ∼ Poisson(µt )

I logµt = age specific intercepts + βPMt + γDOW +
g(t ,df ) + s(tempt ,6) + s(tempt−1,6) + s(dewpointt ,3) +
s(dewpointt−1,3) + s4(dew0,3) + s5(dew1−3,3)

I three ages categories; separate intercept for each
(< 65, 65− 74, ≥ 75)

I dummy variables to record day of week
I s(x ,7) a smoothing spline of variable x with 7 degrees of

freedom
I estimate of β for each city; estimates pooled using

Bayesian arguments for an overall estimate
I very difficult to separate out weather and pollution effects

see also: Crainiceanu, C., Dominici, F. and Parmigiani, G. (2008).
Adjustment uncertainty in effect estimation. Biometrika 95 635–51
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Fitting generalized additive models
R package mgcv; functions gam and gamm

> dat = gamSim(1,n=400,dist="normal",scale=2)

> b = gam(y ˜ s(x0) + s(x1)+s(x2)+s(x3),data = dat)

> plot(b,pages=1,seWithMean = T, residuals=T)

y = 2 sin(πx0) + exp(2x1) + poly(x3,degree = 11) + ε

Reference: Wood (2006) Generalized Additive Models: An
Introduction with R.
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Shrinkage Methods HTF §3.4

I Ridge regression
I

β̂LS = (X T X )−1X T y
β̂ridge = (X T X + λI)−1X T y

I can show that β̂ridge satisfies

min
β

(
Σ{yi − β0 − Σp

j=1xijβj}2 + λΣp
j=1β

2
j

)
min
β

Σ{yi − β0 − Σp
j=1xijβj}2 s.t. Σβ2

j ≤ t

I Assume xj ’s are centered and put these in matrix X (with
no column of 1’s:

min
β

(y − Xβ)T (y − Xβ) s.t. ||β||2 ≤ t
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... ridge regression
I

min
β
{(y − Xβ)T (y − Xβ) + λ||β||2}

I λ is a tuning parameter: λ = 0 gives β̂LS, λ→∞

I in R the library MASS library(MASS) has a ridge
regression version of lm called lm.ridge

I if columns of X are nearly linearly dependent
(multicollinearity), β̂’s for these columns should be shrunk
towards 0.

I essential that the predictors are all scaled to the same units
I this is difficult for interpretation of the coefficients
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X β̂ridge = X (X T X + λI)−1X T y

= UDV T (VD2V T + λI)−1VDUT y
= UDV T (VD2V T + λVV T )−1VDUT y
= UD(D2 + λI)−1DUT y

= Σp
j=1uj(

d2
j

d2
j + λ

)uT
j y

df (λ) = tr[X (X T X + λI)−1X T ] = Σp
j=1

d2
j

d2
j + λ

df (λ) called effective number of parameters
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Lasso
I

min
β

(
Σ{yi − β0 − Σp

j=1xijβj}2 + λΣp
j=1|βj |

)
I

min
β

Σ{yi − β0 − Σp
j=1xijβj}2 s.t. Σ|βj | ≤ t

I quadratic programming problem
I β̂ lasso is nonlinear function of y
I Tibshirani (1996), JRSS B and (2011), JRSS B
I http://http:
//www-stat.stanford.edu/˜tibs/lasso.html
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http://http://www-stat.stanford.edu/~tibs/lasso.html
http://http://www-stat.stanford.edu/~tibs/lasso.html




... shrinkage
I ridge regression gives “proportional shrinkage”
I subset selection gives “hard thresholding” (some βj → 0)
I lasso gives “soft thresholding”: blend of shrinkage and

zeroing

I elastic net combines lasso and ridge regression

min
β

∑{yi − β0 − Σp
j=1xijβj}2 + λ1

p∑
j=1

|βj |+ λ2

p∑
j=1

β2
j


I implemented in R in library(glmnet)

I estimates of coefficients are biased (but may have small
mean-squared error)

I Lasso is now used as a variable selection method
I improvements in algorithms allow fast computation even for

p > n
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Prostate data Ch.3, HTF

> prostate <- read.csv(file="prostate.data",sep="\t")
> rm(try)
> head(prostate)

X lcavol lweight age lbph svi lcp gleason pgg45
1 1 -0.5798185 2.769459 50 -1.386294 0 -1.386294 6 0
2 2 -0.9942523 3.319626 58 -1.386294 0 -1.386294 6 0
3 3 -0.5108256 2.691243 74 -1.386294 0 -1.386294 7 20
4 4 -1.2039728 3.282789 58 -1.386294 0 -1.386294 6 0
5 5 0.7514161 3.432373 62 -1.386294 0 -1.386294 6 0
6 6 -1.0498221 3.228826 50 -1.386294 0 -1.386294 6 0

lpsa train
1 -0.4307829 TRUE
2 -0.1625189 TRUE
3 -0.1625189 TRUE
4 -0.1625189 TRUE
5 0.3715636 TRUE
6 0.7654678 TRUE
> xp <- scale(prostate[,2:9])
> y <- prostate[,10]
> train <- prostate[,11]
## standardize data; y is the response (log psa); extract training data
##
> library(glmnet)
> pr.lasso <- glmnet(xp[train,],y[train])
> plot(pr.lasso)
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... prostate data
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... prostate data
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stuff

International Day for the Elimination of Racial Discrimination


