
Today
I data presentation Michael
I In the news
I Semi-parametric regression

I HW 3: due March 21

I Final Exam: April 11 2:00 – 5:00 pm SS 1085
I 4 questions
I one theory question
I one applied question
I one question from HW
I one question about a study
I one question with computer output
I detailed list of SM sections coming
I See Final Exam from 2012 on course web page
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CAREER OUTLOOK FOR ACTUARIES

in Property/Casualty 
insurance in 20106

in number of actuaries 
employed by insurance 

companies in the US 
between 2010-202012

for U.S. actuaries in 
2010 (median pay)12

WORKERS

533,100  
EXPECTED GROWTH

27%
SALARY

$87,650
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As the number of vehicles on the road rises at record rates, 
the introduction of driverless cars could all but eliminate 
auto insurance premiums in the future — causing significant 
challenges for the market.

WHAT ELSE IS DRIVING THE INDUSTRY?

1.0  BILLION World vehicle population in 20107

1.7 BILLION Cars on the road by 20358

90% 
possible 

decrease in 
future claims 
as a result of 

driverless 
cars11

auto insurance 
premiums written 
each year in the 
US alone10

BILLION
$200

Vehicles per 
1000 people

2002: 16 
2030: 269 
Average annual 
growth rate: 10.6%

2002: 812
2030: 849 

Average annual 
growth rate: 0.2% 

AUTO 
MARKET 

COMPARISON13

In just 10 years, it will be #2. 

20232013

Today, China is the 7th-largest general insurance market.9 

set in 20124

25,000

total loss to US property/casualty 
insurers due to extreme weather in 20112 

THE WINDS OF CLIMATE CHANGE ARE BLOWING
Over the last 30 years, weather events have driven up the value of insured losses 
around the globe, specifically in the US—a trend that is expected to keep growing.2 

in average annual 
winter storm losses 
since the 80s2 

INCREASE
NEW RECORD 
HIGH TEMPS 

100 %  

BILLION

wildfire damage 
in 20102 

BILLION
$1 

drought losses to publicly 
owned crop insurers in 20123 

BILLION$18  

$32

With major natural and man-made catastrophes — 
earthquakes, floods, hurricanes, acts of terrorism 
and more — the last few decades have been costly 
for insured catastrophic losses.

COVERING CATASTROPHES 

Weather-related natural catastrophes

Man-made disasters

Earthquake, tsunami

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012

WORLD INSURED CATASTROPHE LOSSES6

BILLION
= $25.80

= $19.57

= $57.42
= $123.07

= $31.10
= $52.42
= $27.80
= $47.75

= $126.37
= $77.24

The Society of Actuaries’ (SOA) General Insurance track to Fellowship gives candidates the rigorous 
training and skills they need to make a difference in this fast-moving field.

Practical and in-depth modules, unique to the SOA

Rigorous and robust educational pathway to Fellowhsip 

Different tracks 
to fellowship 
through the SOA

4 EXAMS

4 MODULES

6
• Corporate Finance and ERM
• Individual Life and Annuities
• Quantitative Finance and  
   Investment

• Retirement Benefits
• Group and Health
• General Insurance

Number of global actuarial professionals in the SOA network

24,000 +

Learn more about the General Insurance pathway 
to the FSA at soa.org/general-ins

The General 
Insurance

track to
the FSA.

• • Corporaate Finance and ERM • Retirement Benefitfits

First practiced by ancient Chinese and Babylonian traders, General Insurance, also known as Property and Casualty or 
Non-Life Insurance, has played a critical role in the evolution of modern society. 

An immense field today, it continues to grow in size and complexity. As increased globalization, and new economies and 
volatilities emerge, so do new opportunities—especially for risk-focused professionals that seek to solve the unprecedented 
challenges faced by companies and countries around the world. 

NONLIFE INSURANCE PREMIUMS

General Insurance by the numbers. 2006

Direct 
premiums 

written

$1.55 1

TRILLION

2011

Direct 
premiums 

written

TRILLION
$1.971 
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CBC News
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http://www.cbc.ca/thecurrent/episode/2014/03/12/can-a-new-test-to-identify-the-likelihood-of-alzheimers-lead-to-better-treatment/


Nature Medicine News Release
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http://www.nature.com/news/biomarkers-could-predict-alzheimer-s-before-it-starts-1.14834


Nature Medicine Advance Publication
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http://www.nature.com/nm/journal/vaop/ncurrent/full/nm.3466.html


Nature Medicine
I 525 patients, followed for five years
I 46 patients had AD or pre-AD(“aMCI”) at entry; 28

converters
I in year 3 53 patients with aMCI/AD selected for plasma

testing
I matched with 53 normal controls

I looked for biomarkers of disease, using logistic regression
and lasso

I used the most promising to test on a further set of 21
patients with 20 matched controls

I ROC curve: plot of sensitivity (True Positives) against 1-
specificity (False Positives) as cut-off varies
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http://www.nature.com/nm/journal/vaop/ncurrent/fig_tab/nm.3466_F2.html


... nature medicine
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Lasso for choosing explanatory variables
I penalized least squares

min
β

(
Σ{yi − β0 − Σp

j=1xijβj}2 + λΣp
j=1|βj |

)
I equivalent to

min
β

Σ{yi − β0 − Σp
j=1xijβj}2 s.t. Σ|βj | ≤ t

I quadratic programming problem
I β̂ lasso is nonlinear function of y

Tibshirani (1996), JRSS B and (2011), JRSS B

I http://www-stat.stanford.edu/˜tibs/lasso.html

I extends to generalized linear models, implemented in
glmnet
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Extensions of semi-parametric regression
I original model yj = g(xj) + εj

I fit by local polynomial regression:
g(x0)

.
= β0 + β1(xj − x0) + · · ·+ βk (xj − x0)k , ĝ(x0) = β̂0

I β̂ maximizes

`(β, σ; x0,h) =
∑ 1

h
w
(

xj − x0

h

)
`j(β, σ; x0)

I `j(β, σ; x0) = − 1
2σ2 {yj−β0−β1(xj−x0)−· · ·−βk (xj−x0)k}2

−1
2 logσ2

I local log-likelihood fitting

I extend to more general models by replacing `j by the
appropriate log-likelihood contribution
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Example 10.32
I toxoplasmosis data; response – incidence;

x – yearly rainfall SM Figure 10.12

I yj = rj/mj , rj ∼ Binom{m,π(xj)}

I π(x) = exp[θ(x)/{1 + exp{θ(x)}]
I θ(x)

.
= β0 + β1(x − x0) + · · ·+ βk (x − x0)k/k !, θ̂(x0) = β̂0

I local log-likelihood

`(β; x0,h) =
∑ 1

h
w
(

xj − x0

h

)
mj{yjxT

j β − log(1 + exT
j β)}

I or possibly allow for over-dispersion

`(β, φ; x0,h) =
∑ 1

h
w
(

xj − x0

h

)
mj

φ
{yjxT

j β− log(1+exT
j β)}
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Example 10.32
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... Ex 10.32

> library(mgcv)
> library(SMPracticals)
> data(toxo)
> ?gam
> toxo.gam <- gam(cbind(r,m-r) ˜ s(rain), family = binomial, data = toxo)
> summary(toxo.gam)

Family: binomial
Link function: logit

Formula:
cbind(r, m - r) ˜ s(rain)

Parametric coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.09015 0.08573 -1.052 0.293

Approximate significance of smooth terms:
edf Ref.df Chi.sq p-value

s(rain) 6.515 7.57 23.05 0.00259 **

> par(mfrow=c(2,2))
> toxo.gam$sp

s(rain)
0.008141828
> plot(gam(cbind(r,m-r) ˜ s(rain),sp=toxo.gam$sp, family = binomial, data = toxo), residuals=TRUE, pch="*")
> plot(gam(cbind(r,m-r) ˜ s(rain),sp=0.05, family = binomial, data = toxo), residuals=TRUE, pch="*")
> plot(gam(cbind(r,m-r) ˜ s(rain),sp=0.5, family = binomial, data = toxo), residuals=TRUE, pch="*")
> plot(gam(cbind(r,m-r) ˜ s(rain),sp=1, family = binomial, data = toxo), residuals=TRUE, pch="*")
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... Ex 10.32
I gam uses spline smoothing terms, rather than local

polynomials
I smoothing parameter replaces bandwidth h
I kgplm in librarygplm computes kernel smooths, but for

Bernoulli data

I note from output that φ = 1
I quasibinom is a valid choice of family
I gives estimate of φ as 1.8 (with default choice of

smoothing)
I smooth fit no longer significant
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... Ex 10.32
I estimation of smoothing parameter using generalized

cross-validation
I or generalization of AIC

I

GCV(h) =
∑{

yj − ĝ(xj)

1− tr(Sh)/n

}2

I

AICc(h) = n log σ̂2(h) + n
1 + tr(Sh)/n

1− {tr(Sh) + 2}/n
I for generalized linear models

AICc(h) =
∑

dj{yj ; µ̂j(h)}+ n
1 + tr(Sh)/n

1− {tr(Sh) + 2}/n
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Flexible modelling using basis expansions §10.7.2

I yj = g(xj) + εj

I Flexible linear modelling

g(x) = ΣM
m=1βmhm(x)

I This is called a linear basis expansion, and hm is the mth
basis function

I For example if X is one-dimensional:
g(x) = β0 + β1x + β2x2, or
g(x) = β0 + β1 sin(x) + β2 cos(x), etc.

I Simple linear regression has h1(x) = 1, h2(x) = x
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Piecewise polynomials
I piecewise constant basis functions

h1(x) = I(x < ξ1), h2(x) = I(ξ1 ≤ x < ξ2),
h3(x) = I(ξ2 ≤ x)

I equivalent to fitting by local averaging

I piecewise linear basis functions , with constraints
h1(x) = 1, h2(x) = x
h3(x) = (x − ξ1)+, h4(x) = (x − ξ2)+

I windows defined by knots ξ1, ξ2, . . .

I piecewise cubic basis functions
h1(x) = 1,h2(x) = x ,h3(x) = x2,h4(x) = x3

I continuity h5(x) = (x − ξ1)3
+, h6(x) = (x − ξ2)3

+

I continuous function, continuous first and second
derivatives
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Example: earthquake data

> data(quake,package="SMPracticals")
> head(quake)

time mag
1 40.08333 6.0
2 162.38889 6.9
3 210.22917 6.0
> with(quake, plot(log(1/time),mag))## using a different measure of intensity here than in Figure 10.36
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... earthquake

> eq.gam <- gam(mag ˜ s(intensity), data = quake)
> with(quake,lines(intensity, eq.gam$fitted.values))
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... earthquake

> plot(eq.gam, residual=TRUE, pch = "o")
# standard errors plotted by default
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Cubic splines
I truncated power basis of degree 3
I need to choose number of knots K and placement of knots
ξ1, . . . ξK SM uses n knots

I construct features matrix using truncated power basis set
I use constructed matrix as set of predictors
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... cubic splines

> with(quake, bs(log(1/time))[1:10,])
#bs(x) with no other arguments just gives a single cubic polynomial

1 2 3
[1,] 0.0000000 0.0000000 1.0000000
[2,] 0.1018013 0.3903714 0.4989780
[3,] 0.1359705 0.4189773 0.4303434
[4,] 0.1884790 0.4408886 0.3437743
[5,] 0.2056632 0.4436068 0.3189471

...
attr(,"degree")
[1] 3
attr(,"knots")
numeric(0)
attr(,"Boundary.knots")
[1] -10.454784 -3.690961
attr(,"intercept")
[1] FALSE
attr(,"class")
[1] "bs" "basis" "matrix"
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... cubic splines

> with(quake,bs(log(1/time), df=5)[1:10,])
# gives a proper cubic spline basis, here with 5 df

1 2 3 4 5
[1,] 0 0.00000000 0.0000000 0.0000000 1.0000000
[2,] 0 0.01110655 0.1250814 0.4247847 0.4390274
[3,] 0 0.01846075 0.1661869 0.4486889 0.3666635
[4,] 0 0.03370916 0.2283997 0.4600092 0.2778819
[5,] 0 0.03989014 0.2484715 0.4585984 0.2530400

...
attr(,"degree")
[1] 3
attr(,"knots")
33.33333% 66.66667%
-9.943294 -9.520987
attr(,"Boundary.knots")
[1] -10.454784 -3.690961
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... earthquake data
> quake.bs = lm(mag ˜ bs(log(1/time),df=5),data = quake)
> quake.pred = predict(quake.bs, se.fit = TRUE, interval = "confidence")
> quake.pred
$fit

fit lwr upr
1 5.962665 5.216283 6.709047
2 6.279641 5.979190 6.580092
3 6.323859 6.042772 6.604946
> lines(log(1/quake$time),quake.pred[[1]][,1])
> lines(log(1/quake$time),quake.pred[[1]][,2], lty=2)
> lines(log(1/quake$time),quake.pred[[1]][,3], lty=2)
> quake.lo = loess(mag ˜ log(1/time), data = quake)
> quake.lopred = predict(quake.lo, se=T)
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Smoothing splines §10.7.2
I yj = g(tj) + εj , j = 1, . . . ,n

I choose g(·) to solve

min
g

n∑
j=1

{y − g(tj)}2

2σ2 − λ

2σ2

∫ b

a
{g′′(t)}2dt , , λ > 0

I solution is a cubic spline, with knots at each observed xi
value

I see Figure 10.18 for a non-regularized solution

I has an explicit, finite dimensional solution
I ĝ = {ĝ(t1), . . . , ĝ(tn)} = (I + λK )−1y
I K is a symmetric n × n matrix of rank n − 2
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... smoothing splines

> quake$int = log(1/quake$time)
> quake[1:4,]

time mag int
1 40.08333 6.0 -3.690961
2 162.38889 6.9 -5.089994
3 210.22917 6.0 -5.348198
4 303.85417 6.2 -5.716548

> attach(quake)
> plot(int,mag)
> quake.ss2 = smooth.spline(x = int, y = mag, df = 5)
> lines(quake.ss2, col="red")
> quake.ss3
Call:
smooth.spline(x = int, y = mag, cv = TRUE)

Smoothing Parameter spar= 1.499945 lambda= 0.0001340604 (25 iterations)
Equivalent Degrees of Freedom (Df): 11.35023
Penalized Criterion: 64.57512
PRESS: 0.1730025
> lines(quake.ss3, col="blue")
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... smoothing splines
An example from the R help file for smooth.spline:
> data(cars)
> attach(cars)
> plot(speed, dist, main = "data(cars) & smoothing splines")
> cars.spl <- smooth.spline(speed, dist)
> (cars.spl)
Call:
smooth.spline(x = speed, y = dist)

Smoothing Parameter spar= 0.7801305 lambda= 0.1112206 (11 iterations)
Equivalent Degrees of Freedom (Df): 2.635278
Penalized Criterion: 4337.638
GCV: 244.1044
> lines(cars.spl, col = "blue")
> lines(smooth.spline(speed, dist, df=10), lty=2, col = "red")
> legend(5,120,c(paste("default [C.V.] => df =",round(cars.spl$df,1)),
+ "s( * , df = 10)"), col = c("blue","red"), lty = 1:2,
+ bg=’bisque’)
> detach()
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Multidimensional splines
I so far we are considering just 1 X at a time
I for regression splines we replace each X by the new

columns of the basis matrix
I for smoothing splines we get a univariate

regression
I it is possible to construct smoothing splines for two or more

inputs simultaneously, but
computational difficulty increases rapidly

I these are called thin plate splines
I alternative:

E(Y | X1, . . . ,Xp) = f1(X1) + f2(X2) + · · ·+ fp(Xp)
additive models

I binary response:
logit{E(Y | X1, . . . ,Xp)} = f1(X1) + f2(X2) + · · ·+ fp(Xp)
generalized additive models
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Which smoothing method?
I basis functions: natural splines, Fourier, wavelet bases
I regularization via cubic smoothing splines
I kernel smoothers: locally constant/linear/polynomial
I adaptive bandwidth, running medians, running

M-estimates
I Dantzig selector, elastic net, rodeo (Lafferty & Wasserman,

2008)
I Faraway (2006) Extending the Linear Model:

I with very little noise, a small amount of local smoothing
(e.g. nearest neighbours)

I with moderate amounts of noise, kernel and spline methods
are effective

I with large amounts of noise, parametric methods are more
attractive

I “It is not reasonable to claim that any one smoother is
better than the rest”

I loess is robust to outliers, and provides smooth fits
I spline smoothers are more efficient, but potentially sensitive

to outliers
I kernel smoothers are very sensitive to bandwidth
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link

http://www.jacquielawson.com/preview.asp?hdn=0&mpv=3370143&path=105741

