
Today
I HW 1: due February 7, 2 pm.

I Data preparation: reading and neuroscience study

I Generalized linear models: over-dispersion, examples

I In the News: a serendipitous experiment
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http://www.utstat.toronto.edu/reid/2201S14.html


Neuroscience – reading and resting state FMRI
“Short- and long- term effects of a novel on connectivity in the
brain”, Berns, G.S. et al. (2013) Brain Connectivity 3, 590–600
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Generalized linear models: recap
I

f (yj ;µj , φj) = exp{
yjθj − b(θj)

φj
+ c(yj ;φj)}

I E(yj | xj) = b′(θj) = µj defines µj as a function of θj

I g(µj) = xT
j β = ηj links the n observations together via

covariates

I g(·) is the link function; ηj is the linear predictor

I Var(yj | xj) = φjb′′(θj) = φjV (µj)

I V (·) is the variance function
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... recap
I in most cases, either φj is known, or φj = φaj ,

where aj is known

I Normal distribution, φ = σ2,aj = 1

I Binomial distribution φ = 1,aj = 1/mj

I Gamma distribution, φ = 1/ν,aj = 1

I Poisson distribution, φ = 1,aj = 1
I maximum likelihood estimate of φ may be poor (by analogy

with normal theory linear model)
I

φ̂ =
1

n − p

n∑
j=1

(yj − µ̂j)
2

ajV (µ̂j)
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... recap
I `(β) =

∑
j `j{ηj(β); yj , φj}

I
∂`(β)

∂β
= X Tu(β), X =

∂η

∂βT
, uj =

(yj − µj)

φjg′(µj)V (µj)

I β̂ = (X T ŴX )−1X T Ŵ (X β̂ + Ŵ−1û)

I wj = wj(β) = 1/{g′(µj)
2φjV (µj)}, W = diag(wj)

I z = Xβ + W−1u

I zj = xT
j β + w−1

j uj = xT
j β + g′(µj)(yj − µj)

I I(β) = E{−∂2`(β)/∂β∂βT} = X TWX

I a.var(β̂) .= (X TŴX )−1
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... recap
I `(β) =

∑
j `j{ηj(β); yj}

I
∂`(β)

∂β
= X Tu(β), X =

∂η

∂βT
, uj =

(yj − µj)

φjg′(µj)V (µj)

I
∂2`(β)

∂β∂βT
= X T ∂u(β)

∂βT

I
∂uj(β)

∂βb
=
−(∂µj/∂βb)φjg′(µj)V (µj) + (yj − µj)φj{g′′(µj)V (µj) + g′(µj)V ′(µj)}

{φjg′(µj)V (µj)}2

I ∂µj/∂βb = xjb/g′(µj)

I I(β) = E{−∂2`(β)/∂β∂βT} = X TWX
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Over-dispersion §10.6
I over-dispersion means Var(Y ) is larger than expected

under the Poisson or Binomial model
I which specify Var(Y ) = µ, or v(µ) = µ(1− µ)/m
I where does over-dispersion come from? possibly

multiplicative “noise”, see p. 511 for Poisson, (10.34) for
Binomial

I likelihood analysis computes marginal density, averaged
over noise – e.g. Poisson→ Negative Binomial (Ex. 10.26)

I alternative analysis based on “quasi-likelihood” uses
analogy with least squares

I recall that if E(Y ) = Xβ, Var(Y ) = σ2I, then β̂ is best linear
unbiased estimator of β, even if Y is not normally
distributed (Gauss-Markov theorem)

I there could be better nonlinear estimators of β
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... overdispersion
I if E(Y ) = Xβ and Var(Y ) = V , then β̂ =

unbiased for β

I Var(β̂) = (8.19)

I if we knew V , replace β̂ by weighted least squares
estimator; otherwise, use β̂ and adjust confidence intervals
by some estimate of V , see p.377
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... overdispersion
I estimation of β in a generalized linear model depends only

on the specification of the mean function

I and the variance function

I suggests using the same estimating equation for β, but
allow inflation of the variance function by an unknown
dispersion parameter

I e.g. E(yj) = µj , Var(yj) = φµj –

I e.g. E(yj) = µj , Var(yj) = φπj(1− πj)/m –

I estimating equation for β is unchanged
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... overdispersion
I

n∑
j=1

xj
yj − µj

g′(µj)V (µj)
= 0

I this is an unbiased estimating function g(y ;β); satisfies
E{g(Y ;β)} = 0

I under some regularity conditions the solution of
g(y ;β) = 0 is consistent, asymptotically normal

I a. Var(β̃) = φ(X T W̃X )−1; W̃ is diagonal with the same wj ,
but without the φj

I from general theory on unbiased estimating functions

E
{
−∂g(Y ;β)

∂β

}−1
Var{g(Y ;β)}E

{
−∂g(Y ;β)

∂β

}−1
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Example 10.29

I incidence of toxoplasmosis as a function of rainfall
I residual deviances approximately twice the degrees of

freedom
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... example 10.29
> data(toxo)

rain m r
1 1620 18 5
2 1650 30 15
3 1650 1 0
4 1735 4 2
> toxo.glm0 = glm(cbind(r,m-r) ˜ rain + I(rainˆ2) + I(rainˆ3), data = toxo,
family = binomial)

> anova(toxo.glm0)
...

Df Deviance Resid. Df Resid. Dev
NULL 33 74.212
rain 1 0.1244 32 74.087
I(rainˆ2) 1 0.0000 31 74.087
I(rainˆ3) 1 11.4529 30 62.635
> toxo.glm1 = glm(cbind(r,m-r) ˜ poly(rain,3), data = toxo, family = binomial)

> summary(toxo.glm1)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.02427 0.07693 0.315 0.752401
poly(rain, degree = 3)1 -0.08606 0.45870 -0.188 0.851172
poly(rain, degree = 3)2 -0.19269 0.46739 -0.412 0.680141
poly(rain, degree = 3)3 1.37875 0.41150 3.351 0.000806 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 74.212 on 33 degrees of freedom
Residual deviance: 62.635 on 30 degrees of freedom
AIC: 161.33

STA 2201: Applied Statistics II January 31, 2014 17/22



... example 10.29
> toxo.quasi2 <- glm(cbind(r,m-r) ˜ rain +I(rainˆ2)+I(rainˆ3),
+ data = toxo, family = quasibinomial)

> summary(toxo.quasi2)

Call:
glm(formula = cbind(r, m - r) ˜ rain + I(rainˆ2) + I(rainˆ3),

family = quasibinomial, data = toxo)

Deviance Residuals:
Min 1Q Median 3Q Max

-2.7620 -1.2166 -0.5079 0.3538 2.6204

Coefficients:
Estimate Std. Error t value Pr(>|t|)

(Intercept) -2.902e+02 1.215e+02 -2.388 0.0234 *
rain 4.500e-01 1.876e-01 2.398 0.0229 *
I(rainˆ2) -2.311e-04 9.616e-05 -2.404 0.0226 *
I(rainˆ3) 3.932e-08 1.635e-08 2.405 0.0225 *
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for quasibinomial family taken to be 1.940446)

Null deviance: 74.212 on 33 degrees of freedom
Residual deviance: 62.635 on 30 degrees of freedom
> (74.212-62.635)/3/1.940446
[1] 1.988718
> pf(1.988718,3,30,lower=F)
[1] 0.1368842
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... inference

I φ̂ =
1

n − p

n∑
j=1

(yj − µ̂j)
2

V (µ̂j)

I V̂ar(β̃j) = φ̂ V̂ar(β̂j), V̂ar(β̂j) from glm fit

I comparison of models: A ⊂ B DA − DB
.∼ χ2

pB−pA

I changes to

(DA − DB)/(pB − pA)

φ̂

.∼ FpB−pA,pB

I φ̂ estimated under the larger model, B
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In the News
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