Today

► HW 1: due February 7, 2 pm.

January 31, 4-5 pm reserved for questions re HW

Aspects of Design

CD Chapter 2, Placebo/migraine study

 Generalized linear models: fitting, scale parameter, over-dispersion, examples

In the News: neuroscience reading study,

STA 2201: Applied Statistics II January 24, 2014 1/34

CD, Ch.2

- common objectives
- to avoid systematic error, that is distortion in the conclusions arising from sources that do not cancel out in the long run
- to reduce the non-systematic (random) error to a reasonable level by replication and other techniques
- to estimate realistically the likely uncertainty in the final conclusions
- to ensure that the scale of effort is appropriate

STA 2201: Applied Statistics II January 24, 2014 2/34

... design of studies

- we concentrate largely on the careful analysis of individual studies
- in most situations synthesis of information from different investigations is needed
- but even there the quality of individual studies remains important
- examples include overviews, such as the Cochrane reviews
- in some areas new investigations can be set up and completed relatively quickly; design of individual studies may then be less important

STA 2201: Applied Statistics II January 24, 2014 3/34

... design of studies

- formulation of a plan of analysis
- establish and document that proposed data are capable of addressing the research questions of concern
- main configurations of answers likely to be obtained should be set out
- level of detail depends on the context
- even if pre-specified methods must be used, it is crucial not to limit analysis
- planned analysis may be technically inappropriate
- more controversially, data may suggest new research questions or replacement of objectives
- latter will require confirmatory studies

STA 2201: Applied Statistics II January 24, 2014 4/34

Unit of study and analysis

- smallest subdivision of experimental material that may be assigned to a treatment
- Example: RCT unit may be a patient, or a patient-month (in crossover trial)
- Example: public health intervention unit is often a community/school/...
- split plot experiments have two classes of units of study and analysis
- in investigations that are not randomized, it may be helpful to consider what the primary unit of analysis would have been, had a randomized experiment been feasible
- the unit of analysis may not be the unit of interpretation ecological bias
- on the whole, limited detail is needed in examining the variation within the unit of study

STA 2201: Applied Statistics II January 24, 2014 5/34

Table S5. Structure of the eight treatment sequences and assignment of subjects to treatment sequences

Treatment			Treatment		N	umber of subject	ets		
sequence ^a	Attack 1	Attack 2	Attack 3	Attack 4	Attack 5	Attack 6	Recruited	Dropped out	Analyzed
5	$M - \mathbf{M}$	M-P	P - M	P - P	U - M	U - P	10	1	9
7	$P - \mathbf{M}$	P - P	M - M	M - P	U - M	U - P	9	2	7
1	$U - \mathbf{M}$	U-P	M - M	M - P	P - M	P - P	9	2	7
3	$U - \mathbf{M}$	U - P	$P - \mathbf{M}$	P - P	M - M	M - P	10	0	10
2	U - P	$U - \mathbf{M}$	M - P	M - M	P - P	$P - \mathbf{M}$	9	2	7
4	U-P	$U - \mathbf{M}$	P - P	P - M	M - P	M - M	9	2	7
6	M - P	M - M	P - P	$P - \mathbf{M}$	U - P	$U - \mathbf{M}$	10	1	9
8	P - P	$P - \mathbf{M}$	M - P	M - M	U - P	$U - \mathbf{M}$	10	0	10
						Totals	76	10	66

The 6 pill/label combinations are abbreviated as follows: the first letter (in italic) denotes the label (M for 'Maxalt', P for 'Placebo', U for the unspecified 'Maxalt or Placebo'); the second letter (in color) denotes the actual pill (M for maxalt, P for placebo). "Sequence numbers correspond to the order they were entered in the GLMM analyses (cf. table S6).

- "distortion in the conclusions arising from irrelevant sources that do not cancel out in the long run"
- can arise through systematic aspects of, for example, a measuring process, or the spatial or temporal arrangement of units
- this can often be avoided by design, or adjustment in analysis
- can arise by the entry of personal judgement into some aspect of the data collection process
- this can often be avoided by randomization and blinding

STA 2201: Applied Statistics II January 24, 2014 7/34

Table : Illustration: a comparison of T and C

Day	1	2	3	4	5	6	7	8
morning	Т	Т	Т	Т	Τ	Т	Т	Т
afternoon	С	С	С	С	С	С	С	С

Day	1	2	3	4	5	6	7	8
morning	Τ	Т	Т	С	Τ	Τ	С	Τ
afternoon	С	С	С	Τ	С	С	Τ	С

Day	1	2	3	4	5	6	7	8
morning	Т	Τ	С	Т	С	Т	С	С
afternoon	С	С	С	С	Т	С	Т	Т

... avoidance of systematic error

sometimes systematic error can be removed by modelling

$$y_{ij} = \mu + \tau x_{ij} + \delta z_j + \epsilon_{ij}, \quad j = 1, 2; i = 1, \dots n$$
 $x_{ij} = \begin{cases} +1 & \text{if } T \text{ used} \\ -1 & \text{if } C \text{ used} \end{cases}$ $z_1 = 1 \quad \text{morning}$ $z_2 = -1 \quad \text{afternoon}$

- find least squares estimate $\hat{\tau}$ of τ
- ▶ if *T* used *pn* times in morning, $var(\hat{\tau}) = \sigma^2/\{8p(1-p)n\}$
- minimized at p = 1/2 compare (b) and (c) on previous slide
- in (a) systematic error cannot be adjusted for;
 in (b) it can be adjusted for with some loss of precision;
 in (c) treatment comparison is unaffected by systematic differences between morning and afternoon

STA 2201: Applied Statistics II January 24, 2014 9/34

- statistical analysis is particularly important in investigations in which haphazard variation plays an important role
- we can lessen the impact of haphazard variation by
 - use of artificially uniform material
 - arranging that the comparisons of main interest compare like with like
 - inclusion of background variables
 - replication
- these may impact generalizability, so depend on the context

STA 2201: Applied Statistics II January 24, 2014 10/34

CD §2.6

- how big should my sample be?
- key observation: $var(\bar{y}_1 \bar{y}_2) = 2\sigma^2/m$
- set a bound on the standard error of the most important comparison, say c
- then want $2\sigma^2/m \approx c^2$
- i.e. $m \approx 2\sigma^2/c^2$
- c will be to some extent determined by the magnitude of differences of interest
- this requires fewer quantities to be set than usual power calculations

Migraine study revisited

- 7 "conditions", or treatments
- unit of analysis?
- within patients, each attack assigned one of the 7 treatments; 1st 'treatment' always C
- small subset of 6! choices used for each patient/block
- balanced on order, since attacks are sequential in time
- alternating M and P for for pill; repeat each envelope label twice
- several observations in each unit, corresponding to different patients
- model

$$\log \mu_{\mathit{ijt}} = eta_1 + \mathrm{cond}_j + \mathrm{time}_t + \mathrm{cond} imes \mathrm{time}_{\mathit{jt}} + b_\mathit{i}$$
 $y_{\mathit{ijt}} = \mu_{\mathit{ijt}} + \epsilon_{\mathit{ijt}}$

▶ family = gaussian, link = log

Table S5. Structure of the eight treatment sequences and assignment of subjects to treatment sequences

Treatment			Treatment		Number of subjects				
sequence ^a	Attack 1	Attack 2	Attack 3	Attack 4	Attack 5	Attack 6	Recruited	Dropped out	Analyzed
5	<i>M</i> – M	M-P	P - M	P - P	U - M	U - P	10	1	9
7	$P - \mathbf{M}$	P - P	M - M	M - P	$U - \mathbf{M}$	U - P	9	2	7
1	$U - \mathbf{M}$	U-P	M - M	M - P	$P - \mathbf{M}$	P - P	9	2	7
3	$U - \mathbf{M}$	U - P	$P - \mathbf{M}$	P - P	M - M	M - P	10	0	10
2	U - P	$U - \mathbf{M}$	M - P	M - M	P - P	$P - \mathbf{M}$	9	2	7
4	U - P	$U - \mathbf{M}$	P - P	P - M	M - P	M - M	9	2	7
6	M - P	M - M	P - P	$P - \mathbf{M}$	U - P	$U - \mathbf{M}$	10	1	9
8	P - P	$P - \mathbf{M}$	M - P	M - M	U - P	U - M	10	0	10
						Totals	76	10	66

The 6 pill/label combinations are abbreviated as follows: the first letter (in italic) denotes the label (M for 'Maxalt', P for 'Placebo', U for the unspecified 'Maxalt or Placebo'); the second letter (in color) denotes the actual pill (M for maxalt, P for placebo). "Sequence numbers correspond to the order they were entered in the GLMM analyses (cf. table S6).

Generalized linear models: theory

•

$$f(y_j; \mu_j, \phi_j) = \exp\{\frac{y_j \theta_j - b(\theta_j)}{\phi_j} + c(y_j; \phi_j)\}$$

- ▶ $E(y_j \mid x_j) = b'(\theta_j) = \mu_j$ defines μ_j as a function of θ_j
- $g(\mu_j) = \mathbf{x}_j^T \boldsymbol{\beta} = \eta_j$ links the n observations together via covariates
- ▶ $g(\cdot)$ is the link function; η_i is the linear predictor
- $Var(y_j \mid x_j) = \phi b''(\theta_j) = \phi V(\mu_j)$
- $ightharpoonup V(\cdot)$ is the variance function

STA 2201: Applied Statistics II January 24, 2014 15/34

Examples

- Normal
- Binomial
- Poisson
- Gamma/Exponential
- Inverse Gaussian

$$f(y_j; \mu_j, \phi_j) = \exp\{\frac{y_j \theta_j - b(\theta_j)}{\phi_j} + c(y_j; \phi_j)\}, \quad \mathsf{E}(y_j) = \mu_j, \quad \mathsf{var}(y_j) = \phi V(\mu_j)$$

STA 2201: Applied Statistics II January 24, 2014 16/34

Scale parameter ϕ_j

- ▶ in most cases, either ϕ_j is known, or $\phi_j = \phi a_j$, where a_j is known
- Normal distribution, $\phi =$
- ▶ Binomial distribution ϕ_j =
- Gamma distribution, $\phi =$

18/34

Inference

$$\ell(\beta; \mathbf{y}) = \sum \left\{ \frac{y_j \theta_j - b(\theta_j)}{\phi_j} + c(\mathbf{y}_j, \phi_j) \right\}$$

$$b'(\theta_j) = \mu_j; \quad g(\mu_j) = \eta_j = X_j^{\mathrm{T}} \beta$$

$$\blacktriangleright \ \ell(\beta; y) = \sum \ell_j \{ \eta_j(\beta), y_j \}, \quad \text{say}$$

matrix notation:

$$\frac{\partial \ell(\beta)}{\partial \beta} = X^{\mathrm{T}} u(\beta), \quad X = \frac{\partial \eta}{\partial \beta^{\mathrm{T}}}, \quad u = (u_1, \dots, u_n), \quad u_j = u_j$$

STA 2201: Applied Statistics II January 24, 2014 19/34

Maximum likelihood estimation

- ▶ linearization: $X^{\mathrm{T}}u(\hat{\beta}) = 0 \doteq X^{\mathrm{T}}u(\beta) + (\hat{\beta} \beta)X^{\mathrm{T}}\frac{\partial u(\beta)}{\partial \beta^{\mathrm{T}}}$
- re-arrange: $\hat{\beta} = \beta + I(\beta)^{-1}X^{T}u(\beta)$
- ► ntbc: $I(\beta) = X^{\mathsf{T}}WX, \quad W = \operatorname{diag}(w_j), \quad w_j = 1/\{g'(\mu_j)^2 \phi_j V(\mu_j)\}$

$$\hat{\beta} = \beta + (X^{T}WX)^{-1}X^{T}u(\beta) = (X^{T}WX)^{-1}\{X^{T}WX\beta + X^{T}u(\beta)\}$$

$$= (X^{T}WX)^{-1}\{X^{T}W(X\beta + W^{-1}u(\beta))\}$$

$$= (X^{T}WX)^{-1}X^{T}Wz$$

STA 2201: Applied Statistics II January 24, 2014 20/34

... maximum likelihood estimation

•

$$\hat{\beta} = \beta + (X^{T}WX)^{-1}X^{T}u(\beta) = (X^{T}WX)^{-1}\{X^{T}WX\beta + X^{T}u(\beta)\}$$

$$= (X^{T}WX)^{-1}\{X^{T}W(X\beta + W^{-1}u(\beta)\}$$

$$= (X^{T}WX)^{-1}X^{T}Wz$$

- ▶ does not involve φ_i
- if unknown (e.g. normal distribution or gamma distribution), must be estimated
- \blacktriangleright maximum likelihood estimate of ϕ may be poor (by analogy with normal theory linear model)

•

$$\hat{\phi} = \frac{1}{n-p} \sum_{j=1}^{n} \frac{(y_j - \hat{\mu}_j)^2}{a_j V(\hat{\mu}_j)}$$

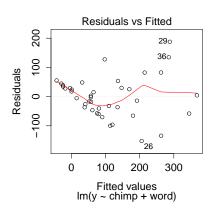
21/34

Table 10.5 Times in minutes taken by four chimpanzees to learn ten words (Brown and Hollander, 1977, p. 257).

					W	ord				
Chimpanzee	1	2	3	4	5	6	7	8	9	10
1	178	60	177	36	225	345	40	2	287	14
2	78	14	80	15	10	115	10	12	129	80
3	99	18	20	25	15	54	25	10	476	55
4	297	20	195	18	24	420	40	15	372	190

- "when a linear model is fitted, the F-statistic for non-additivity (8.27) strongly indicates and change of scale" (p.485,6);
 eq. (8.27) is on p.391
- ▶ linear model: $y_{ij} = \mu + \alpha_i + \beta_j + \epsilon_{ij}$
- ▶ non-additivity: $y_{ij} = \mu + \alpha_i + \beta_j + \delta(\alpha_i \beta_j) + \epsilon_{ij}$
- ightharpoonup special type of non-additivity with just 1 parameter to estimate δ

chimp.lm = lm(y ~ chimp + word, data = chimps)
anova(update(chimp.lm, . ~ . + I(chimp.lm\$fitted.values*chimp.lm\$fitted.values)))



STA 2201: Applied Statistics II January 24, 2014 23/34

- change to a model more suitable for a response that measures time
- suggestion: Gamma model with mean $\mu_{cw} = \exp(\alpha_c + \gamma_w)$

$$f(y_{cw};\mu_{cw},\nu) = \frac{1}{\Gamma(\nu)} y_{cw}^{\nu-1} \left(\frac{\nu}{\mu_{cw}}\right)^{\nu} \exp(-\nu y_{cw}/\mu_{cw})$$

▶

$$\mathsf{E}(y_{cw}) = \mu_{cw}; \qquad \mathsf{var}(y_{cw}) = \mu_{cw}^2 / \nu$$

linear predictor

$$\eta_{\rm CW} = \alpha_{\rm C} + \gamma_{\rm W}$$

link function

$$\eta = \log(\mu); \qquad \mu = \exp(\eta)$$

STA 2201: Applied Statistics II January 24, 2014 24/34

486

10 · Nonlinear Regression Models

Term	df	Deviance reduction	Term	df	Deviance reduction
Chimp (unadj. for Word)	3	6.95	Chimp (adj. for Word)	3	6.22
Word (adj. for Chimp)	9	38.46	Word (unadj. for Chimp)	9	39.19

Table 10.6 Analysis of deviance for models fitted to chimpanzee data.

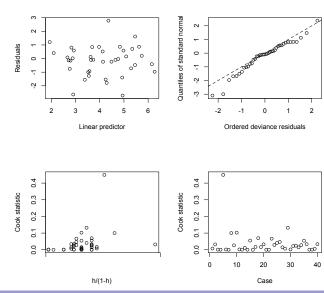
```
chimp.glm = glm(y ~ chimp + word, family = Gamma(link = "log"), data = chimps)
> anova(chimp.glm)
Analysis of Deviance Table
Model: Gamma, link: log
Response: y
Terms added sequentially (first to last)
     Df Deviance Resid, Df Resid, Dev
NIII.I.
                        39 60 378
chimp 3 6.948
                       36 53.430
word
         38.459
                        27 14.972
> summary(fit7)
(Dispersion parameter for Gamma family taken to be 0.4336663)
   Null deviance: 60.378 on 39 degrees of freedom
```

Residual deviance: 14.972 on 27 degrees of freedom

- "the signficance of the deviance reductions ... is gauged by F-tests" (p.486)
- see Eq (10.2), but note a few lines above "for now we suppress φ"
- see Example 10.3: $D_B D_A = \phi^{-1} \sum \{...\} \sim \chi^2_{p-q}$
- lacktriangleright in this example we are estimating ϕ not needed for binary data
- ▶ p.483, 2nd paragraph: "when ϕ is unknown, the scaled deviance is replaced by the deviance"
- net result: deviance reduction for chimp, adjusted for word is 6.22 on 3 d.f.
- ▶ this is scaled by the estimate of ϕ , using (10.20), which is 0.4336 from \mathbb{R} code; 0.432 in text
- ▶ refer (6.22/3)/0.433 to $F_{3,27}$ distribution; *p*-value is pf (4.788, 3, 27, lower.tail=F) # 0.0084

STA 2201: Applied Statistics II January 24, 2014 26/34

plot.glm.diag(chimps.glm)



- the canonical link is $\eta_{\it cw}=1/\mu_{\it cw}$
- interpretation as the speed at which a word is learned
- non-additivity test for this link has p-value 0.11
- how to compare inverse link to log link?

STA 2201: Applied Statistics II January 24, 2014 28/34

Example 10.29

10 - Nonlinear Regression Models

City	Rain	r/m	City	Rain	r/m	City	Rain	r/m	City	Rain	r/m
1	1735	2/4	11	2050	7/24	21	1756	2/12	31	1780	8/13
2	1936	3/10	12	1830	0/1	22	1650	0/1	32	1900	3/10
3	2000	1/5	13	1650	15/30	23	2250	8/11	33	1976	1/6
4	1973	3/10	14	2200	4/22	24	1796	41/77	34	2292	23/3
5	1750	2/2	15	2000	0/1	25	1890	24/51			
6	1800	3/5	16	1770	6/11	26	1871	7/16			
7	1750	2/8	17	1920	0/1	27	2063	46/82			
8	2077	7/19	18	1770	33/54	28	2100	9/13			
9	1920	3/6	19	2240	4/9	29	1918	23/43			
10	1800	8/10	20	1620	5/18	30	1834	53/75			

Table 10.19
Toxoplamosis data:
rainfall (mm) and the
numbers of people testing
positive for
toxoplasmosis, r, our of m
people tested, for 34 cities
in El Salvador (Efron,
1986).

Terms	df	Deviance
Constant	33	74.21
Linear	32	74.09
Quadratic	31	74.09
Cubic	30	62.63

Table 10.20 Analysis of deviance for polynomial logistic models fitted to the toxoplasmosis data.

- incidence of toxoplasmosis as a function of rainfall
- residual deviances approximately twice the degrees of freedom

STA 2201: Applied Statistics II January 24, 2014 29/34

... example 10.29

```
> data(toxo)
 rain m r
1 1620 18 5
2 1650 30 15
3 1650 1 0
4 1735 4 2
> toxo.glm0 = glm(cbind(r,m-r) ~ rain + I(rain^2) + I(rain^3), data = toxo,
family = binomial)
> anova(toxo.glm0)
         Df Deviance Resid. Df Resid. Dev
NIIT.T.
                           33
                                74.212
       1 0.1244
                         32
                                74.087
rain
                               74.087
I(rain^2) 1 0.0000
                         31
I(rain^3) 1 11.4529
                         30
                                 62.635
> toxo.glm1 = glm(cbind(r,m-r) ~ poly(rain.3), data = toxo, family = binomial)
> summary(toxo.glm1)
Coefficients:
                      Estimate Std. Error z value Pr(>|z|)
(Intercept)
                      0.02427 0.07693 0.315 0.752401
poly(rain, degree = 3)1 -0.08606 0.45870 -0.188 0.851172
poly(rain, degree = 3)2 -0.19269 0.46739 -0.412 0.680141
poly(rain, degree = 3)3 1.37875 0.41150 3.351 0.000806 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 '' 1
(Dispersion parameter for binomial family taken to be 1)
```

Dichotomizing continuous data (§10.4.1)

- ▶ suppose $Z_j = x_i^T \gamma + \sigma \epsilon_j$, j = 1, ..., n; $\epsilon_j \sim f(\cdot)$
- $Y_i = 1$ if $Z_i > 0$; otherwise 0

$$Pr(Y_j = 1) = 1 - F(-x_j^T \gamma / \sigma) = 1 - F(-x_j^T \beta) = F(x_j^T \beta), \text{ if } ...$$

examples (Table 10.7)

$$\begin{array}{llll} \text{logistic} & F(u) = e^u/(1+e^u) & \text{logit} & \log\{p/(1-p)\} = x^T\beta \\ \text{normal} & F(u) = \Phi(u) & \text{probit} & \Phi^{-1}(p) = x^T\beta \\ \text{log-Weibull} & F(u) = 1 - \exp(-e^u) & \log-\log & -\log\{-\log(p)\} = x^T\beta \\ \text{Gumbel} & F(u) = \exp\{-e^{-u}\} & \text{c-log-log} & \log\{-\log(1-p)\} = x^T\beta \end{array}$$

- Example 10.17 considers how much information is lost in going from Z to Y
- ▶ in special case where $x_j = -1, -0.9, ..., 0.9, 1,$ $z_j = 0.5 + 2x_j + \epsilon_j, \quad \epsilon_j \sim N(0, 1)$ $y_i = 1(z_i > 0)$

... example 10.17

- $x_j = -1, -0.9, \dots, 0.9, 1,$ $z_j = 0.5 + 2x_j + \epsilon_j, \quad \epsilon_j \sim N(0, 1), \quad y_j = 1(z_j > 0)$
- $\hat{\beta}_Z$ is least squares estimator from original data

$$\operatorname{cov}(\hat{\beta}_Z) = (X^T X)^{-1} = \left(\begin{array}{cc} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{array}\right)^{-1}$$

$$\operatorname{var}(\hat{\beta}_{1Z}) = 1/\sum (x_i - \bar{x})^2$$

- $\hat{\beta}_Y$ is the estimator from dichotomized data
- $ightharpoonup \operatorname{cov}(\hat{\beta}_Y) \doteq (X^T W X)^{-1}, \quad W = \operatorname{diag}(w_j) \text{ (p.488)}$

$$\triangleright \operatorname{cov}(\hat{\beta}_Y) \doteq \left(\begin{array}{cc} \sum w_j & \sum w_j x_j \\ \sum w_j x_j & \sum w_j x_j^2 \end{array} \right)^{-1}$$

 $ightharpoonup var(\hat{\beta}_{1Y}) = (X^T W X)_{(2,2)}^{-1}$

STA 2201: Applied Statistics II January 24, 2014 32/34

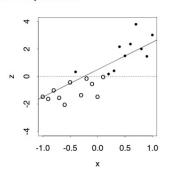
... example 10.17

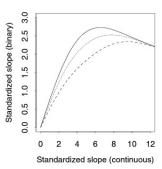
- ▶ Figure 10.6 (right) plots $\beta_1/\sqrt{\sum(x_j-\bar{x})^2}$ on the *x*-axis, and $\beta_1/\sqrt{}$ on the *y*-axis
- ▶ trying to compare v_Z and v_Y , as well as indicate behaviour of $\beta_{1Y}/\sqrt{v_Y}$ as $\beta_1 \to \infty$

10.4 · Proportion Data

489

Figure 10.6 Efficiency loss due to reducing continuous variables to binary ones. Left panel: simulated data. Blobs above the dotted line are counted as successes with zeros below it as failures: the solid line is 0.5 + 2x. Right panel: Comparison of asymptotic t statistics when continuous data are dichotomized, for normal error distribution, when $\beta_0 = 0.5, 1, 1.5$ (solid. dots, dashes).





STA 2201: Applied Statistics II January 24, 2014 33/34