
Today
I HW 1: due February 7, 2 pm.

January 31, 4-5 pm reserved for questions re HW

I Aspects of Design CD Chapter 2, Placebo/migraine study

I Generalized linear models: fitting, scale parameter,
over-dispersion, examples

I In the News: neuroscience reading study,
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Design of Studies CD, Ch.2

I common objectives
I to avoid systematic error, that is distortion in the

conclusions arising from sources that do not cancel out in
the long run

I to reduce the non-systematic (random) error to a
reasonable level by replication and other techniques

I to estimate realistically the likely uncertainty in the final
conclusions

I to ensure that the scale of effort is appropriate
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... design of studies
I we concentrate largely on the careful analysis

of individual studies
I in most situations synthesis of information from different

investigations is needed
I but even there the quality of individual studies

remains important
I examples include overviews, such as the

Cochrane reviews
I in some areas new investigations can be set up and

completed relatively quickly; design of individual studies
may then be less important
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... design of studies
I formulation of a plan of analysis
I establish and document that proposed data are capable of

addressing the research questions of concern
I main configurations of answers likely to be obtained should

be set out
I level of detail depends on the context
I even if pre-specified methods must be used, it is crucial

not to limit analysis
I planned analysis may be technically inappropriate
I more controversially, data may suggest new research

questions or replacement of objectives
I latter will require confirmatory studies
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Unit of study and analysis
I smallest subdivision of experimental material that may be

assigned to a treatment
I Example: RCT – unit may be a patient, or a patient-month

(in crossover trial)
I Example: public health intervention – unit is often a

community/school/...
I split plot experiments have two classes of units of study

and analysis
I in investigations that are not randomized, it may be helpful

to consider what the primary unit of analysis would have
been, had a randomized experiment been feasible

I the unit of analysis may not be the unit of interpretation –
ecological bias

I on the whole, limited detail is needed in examining the
variation within the unit of study
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Avoidance of systematic error CD §2.4

I “distortion in the conclusions arising from irrelevant
sources that do not cancel out in the long run”

I can arise through systematic aspects of, for example,
a measuring process, or the spatial or temporal
arrangement of units

I this can often be avoided by design,
or adjustment in analysis

I can arise by the entry of personal judgement
into some aspect of the data collection process

I this can often be avoided by randomization and blinding
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... avoidance of systematic error CD §2.4

Table : Illustration: a comparison of T and C

Day 1 2 3 4 5 6 7 8
morning T T T T T T T T
afternoon C C C C C C C C

Day 1 2 3 4 5 6 7 8
morning T T T C T T C T
afternoon C C C T C C T C

Day 1 2 3 4 5 6 7 8
morning T T C T C T C C
afternoon C C C C T C T T
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... avoidance of systematic error
I sometimes systematic error can be removed by modelling
I

yij = µ+ τxij + δzj + εij , j = 1,2; i = 1, . . .n
I

xij =

{
+1 if T used
−1 if C used

z1 = 1 morning
z2 = −1 afternoon

I find least squares estimate τ̂ of τ
I if T used pn times in morning, var(τ̂) = σ2/{8p(1− p)n}
I minimized at p = 1/2 compare (b) and (c) on previous slide
I in (a) systematic error cannot be adjusted for;

in (b) it can be adjusted for with some loss of precision;
in (c) treatment comparison is unaffected by systematic
differences between morning and afternoon
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Control and estimation of random error CD §2.5

I statistical analysis is particularly important in investigations
in which haphazard variation plays an important role

I we can lessen the impact of haphazard variation by
I use of artificially uniform material
I arranging that the comparisons of main interest compare

like with like
I inclusion of background variables
I replication

I these may impact generalizability, so depend on the
context
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Scale of effort CD §2.6

I how big should my sample be?
I key observation: var(ȳ1 − ȳ2) = 2σ2/m

I set a bound on the standard error of the most important
comparison, say c

I then want 2σ2/m ≈ c2

I i.e. m ≈ 2σ2/c2

I c will be to some extent determined by the magnitude of
differences of interest

I this requires fewer quantities to be set than usual power
calculations
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Migraine study revisited
I 7 “conditions”, or treatments
I unit of analysis?
I within patients, each attack assigned one of the 7

treatments; 1st ’treatment’ always C
I small subset of 6! choices used for each patient/block
I balanced on order, since attacks are sequential in time
I alternating M and P for for pill; repeat each envelope label

twice
I several observations in each unit, corresponding to

different patients
I model

logµijt = β1 + condj + timet + cond× timejt + bi

yijt = µijt + εijt

I family = gaussian, link = log
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Generalized linear models: theory
I

f (yj ;µj , φj) = exp{
yjθj − b(θj)

φj
+ c(yj ;φj)}

I E(yj | xj) = b′(θj) = µj defines µj as a function of θj

I g(µj) = xT
j β = ηj links the n observations together via

covariates

I g(·) is the link function; ηj is the linear predictor

I Var(yj | xj) = φb′′(θj) = φV (µj)

I V (·) is the variance function
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Examples
I Normal
I Binomial
I Poisson
I Gamma/Exponential
I Inverse Gaussian

f (yj ;µj , φj ) = exp{yjθj − b(θj )

φj
+ c(yj ;φj )}, E(yj ) = µj , var(yj ) = φV (µj )
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Scale parameter φj

I in most cases, either φj is known, or φj = φaj ,
where aj is known

I Normal distribution, φ =

I Binomial distribution φj =

I Gamma distribution, φ =
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Inference
I `(β; y) =

∑
{yjθj−b(θj )

φj
+ c(yj , φj)}

I b′(θj) = µj ; g(µj) = ηj = xT
j β

I `(β; y) =
∑
`j{ηj(β), yj}, say

I
∂`(β; y)

∂βk
=
∑ ∂`j

∂ηj

∂ηj

∂βk
=
∑ ∂`j

∂ηj
xjk

I
∂`j
∂ηj

=
∂`j
∂θj

∂θj

∂ηj
=

yj − µj

φjg′(µj)V (µj)

I matrix notation:

∂`(β)

∂β
= X Tu(β), X =

∂η

∂βT
, u = (u1, . . . ,un), uj =
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Maximum likelihood estimation
I
∂`(β)

∂β
= X Tu(β), X =

∂η

∂βT
, u = (u1, . . . ,un), uj =

I linearization: X Tu(β̂) = 0 .
= X Tu(β) + (β̂ − β)X T∂u(β)

∂βT

I re-arrange: β̂ = β + I(β)−1X Tu(β)

I ntbc:
I(β) = X TWX , W = diag(wj), wj = 1/{g′(µj)

2φjV (µj)}

β̂ = β + (X TWX )−1X Tu(β) = (X TWX )−1{X TWXβ + X Tu(β)}
= (X TWX )−1{X TW (Xβ + W−1u(β)}
= (X TWX )−1X TWz
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... maximum likelihood estimation
I

β̂ = β + (X TWX )−1X Tu(β) = (X TWX )−1{X TWXβ + X Tu(β)}
= (X TWX )−1{X TW (Xβ + W−1u(β)}
= (X TWX )−1X TWz

I does not involve φj

I if unknown (e.g. normal distribution or gamma distribution),
must be estimated

I maximum likelihood estimate of φ may be poor (by analogy
with normal theory linear model)

I

φ̂ =
1

n − p

n∑
j=1

(yj − µ̂j)
2

ajV (µ̂j)
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Chimp data SM, Ex 10.16

I “when a linear model is fitted, the F -statistic for
non-additivity (8.27) strongly indicates and change of
scale” (p.485,6); eq. (8.27) is on p.391

I linear model: yij = µ+ αi + βj + εij
I non-additivity: yij = µ+ αi + βj + δ(αiβj) + εij
I special type of non-additivity with just 1 parameter to

estimate δ

chimp.lm = lm(y ˜ chimp + word, data = chimps)
anova(update(chimp.lm, . ˜ . + I(chimp.lm$fitted.values*chimp.lm$fitted.values)))
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... chimp data
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... chimp data
I change to a model more suitable for a response that

measures time
I suggestion: Gamma model with mean µcw = exp(αc + γw )

I

f (ycw ;µcw , ν) =
1

Γ(ν)
yν−1

cw

(
ν

µcw

)ν
exp(−νycw/µcw )

I

E(ycw ) = µcw ; var(ycw ) = µ2
cw/ν

I linear predictor
ηcw = αc + γw

I link function

η = log(µ); µ = exp(η)
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... chimp data

chimp.glm = glm(y ˜ chimp + word, family = Gamma(link = "log"), data = chimps)
> anova(chimp.glm)
Analysis of Deviance Table

Model: Gamma, link: log

Response: y

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 39 60.378
chimp 3 6.948 36 53.430
word 9 38.459 27 14.972
> summary(fit7)
(Dispersion parameter for Gamma family taken to be 0.4336663)

Null deviance: 60.378 on 39 degrees of freedom
Residual deviance: 14.972 on 27 degrees of freedom
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... chimp data
I “the signficance of the deviance reductions ... is gauged by

F -tests” (p.486)
I see Eq (10.2), but note a few lines above “for now we

suppress φ”
I see Example 10.3: DB − DA = φ−1∑{...} .∼ χ2

p−q

I in this example we are estimating φ not needed for binary data

I p.483, 2nd paragraph: “when φ is unknown, the scaled
deviance is replaced by the deviance”

I net result: deviance reduction for chimp, adjusted for
word is 6.22 on 3 d.f.

I this is scaled by the estimate of φ, using (10.20), which is
0.4336 from R code; 0.432 in text

I refer (6.22/3)/0.433 to F3,27 distribution; p-value is
pf(4.788,3,27,lower.tail=F) # 0.0084
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... chimp data
plot.glm.diag(chimps.glm)
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... chimp data
I the canonical link is ηcw = 1/µcw

I interpretation as the speed at which a word is learned
I non-additivity test for this link has p-value 0.11
I how to compare inverse link to log link?
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Example 10.29

I incidence of toxoplasmosis as a function of rainfall
I residual deviances approximately twice the degrees of

freedom
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... example 10.29
> data(toxo)

rain m r
1 1620 18 5
2 1650 30 15
3 1650 1 0
4 1735 4 2
> toxo.glm0 = glm(cbind(r,m-r) ˜ rain + I(rainˆ2) + I(rainˆ3), data = toxo,
family = binomial)

> anova(toxo.glm0)
...

Df Deviance Resid. Df Resid. Dev
NULL 33 74.212
rain 1 0.1244 32 74.087
I(rainˆ2) 1 0.0000 31 74.087
I(rainˆ3) 1 11.4529 30 62.635
> toxo.glm1 = glm(cbind(r,m-r) ˜ poly(rain,3), data = toxo, family = binomial)

> summary(toxo.glm1)
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.02427 0.07693 0.315 0.752401
poly(rain, degree = 3)1 -0.08606 0.45870 -0.188 0.851172
poly(rain, degree = 3)2 -0.19269 0.46739 -0.412 0.680141
poly(rain, degree = 3)3 1.37875 0.41150 3.351 0.000806 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 74.212 on 33 degrees of freedom
Residual deviance: 62.635 on 30 degrees of freedom
AIC: 161.33
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Dichotomizing continuous data (§10.4.1)
I suppose Zj = xT

j γ + σεj , j = 1, . . . ,n; εj ∼ f (·)
I Yj = 1 if Zj > 0; otherwise 0
I

Pr(Yj = 1) = 1−F (−xT
j γ/σ) = 1−F (−xT

j β) = F (xT
j β), if ...

I examples (Table 10.7)
logistic F (u) = eu/(1 + eu) logit log{p/(1− p)} = xTβ

normal F (u) = Φ(u) probit Φ−1(p) = xTβ

log-Weibull F (u) = 1− exp(−eu) log-log − log{− log(p)} = xTβ

Gumbel F (u) = exp{−e−u} c-log-log log{− log(1− p)} = xTβ

I Example 10.17 considers how much information is lost in
going from Z to Y

I in special case where xj = −1,−0.9, . . . ,0.9,1,
zj = 0.5 + 2xj + εj , εj ∼ N(0,1)
yj = 1(zj > 0)
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... example 10.17
I xj = −1,−0.9, . . . ,0.9,1,

zj = 0.5 + 2xj + εj , εj ∼ N(0,1), yj = 1(zj > 0)

I β̂Z is least squares estimator from original data

I cov(β̂Z ) = (X T X )−1 =

(
n

∑
xi∑

xi
∑

x2
i

)−1

I var(β̂1Z ) = 1/
∑

(xi − x̄)2

I β̂Y is the estimator from dichotomized data
I cov(β̂Y )

.
= (X T WX )−1, W = diag(wj) (p.488)

I wj =
φ2(β0 + β1xj)

Φ(−β0 − β1xj)Φ(β0 + β1xj)

I cov(β̂Y )
.

=

( ∑
wj

∑
wjxj∑

wjxj
∑

wjx2
j

)−1

I var(β̂1Y ) = (X T WX )−1
(2,2)
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... example 10.17
I Figure 10.6 (right) plots β1/

√∑
(xj − x̄)2 on the x-axis,

and β1/
√ on the y -axis

I trying to compare vZ and vY , as well as indicate behaviour
of β1Y/

√
vY as β1 →∞
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