
STA 2201S Final Test??

STA2201H1S
END OF TERM TEST

April 11, 2014, 2.00 – 5.00 pm

Answer all four questions in examination booklets.
Each question is worth 25 marks.

1. The data shown in Figure 1 is the “Challenger Data” given in Chapter 1 of SM. It shows
the number of O-rings damaged in each of 23 shuttle launches, and the temperature of the
launch. O-rings are rubber insulating rings that plug the joints in the fuel system. There are
6 O-rings on each launch rocket, and there was some evidence from bench testing that O-
ring damage was associated with lower temperatures, causing the O-rings to be less flexible.
This data was discussed prior to the launch of the Challenger on 28 January 1986, because
the predicted temperature for the launch date was 31◦F, and there was uncertainty about
whether or not O-ring damage was associated with temperature.
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Figure 1: Left panel shows number of damaged O-rings, as a function of temperature. Right
panel shows proportion of damaged O-rings, and fitted model shuttle.glm.
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(a) Based on the output from shuttle.glm:

i. Writing Ri for the number of damaged O-rings on launch i, give an expression for
the model for Ri used in analyzing this data. Give both the form of the linear
predictor, and the probability density function. What independence assumptions
are implicit in the model used in this question?

ii. what is the estimated effect of a decrease of 1◦F on the probability of O-ring
damage? Is there evidence of over-dispersion in the data, relative to the model
fitted? Explain.

iii. What is the predicted number of damaged O-rings at 31◦F? Describe briefly how
you might estimate a standard error for that prediction.

(b) The model shuttle.glm2 includes pressure as a covariate. What is the p-value for a
log-likelihood ratio test of the effect of pressure on the probability of O-ring damage?

(c) The original analysis of the data in 1986 omitted all the launches with no damaged
O-rings, on the grounds that these observations did not provide any evidence about the
link between damage and temperature. If these points were omitted, what would be
the apparent relationship between O-ring damage and temperature?

> library(SMPracticals)

Loading required package: ellipse

> data(shuttle)

> head(shuttle)

m r temperature pressure

1 6 0 66 50

2 6 1 70 50

3 6 0 69 50

4 6 0 68 50

5 6 0 67 50

> shuttle.glm <- glm(cbind(r,m-r) ~ temperature, family = binomial,

+ data = shuttle)

> summary(shuttle.glm)

Call:

glm(formula = cbind(r, m - r) ~ temperature, family = binomial)

Deviance Residuals:

Min 1Q Median 3Q Max

-0.95227 -0.78299 -0.54117 -0.04379 2.65152

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.08498 3.05247 1.666 0.0957 .

temperature -0.11560 0.04702 -2.458 0.0140 *

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(Dispersion parameter for binomial family taken to be 1)
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Null deviance: 24.230 on 22 degrees of freedom

Residual deviance: 18.086 on 21 degrees of freedom

AIC: 35.647

Number of Fisher Scoring iterations: 5

> betahat <- coef(shuttle.glm)

> exp(betahat[1] +31*betahat[2])/(1+exp(betahat[1] +31*betahat[2]))

(Intercept)

0.8177744

> shuttle.glm2 <- glm(cbind(r,m-r)~temperature + pressure, family = binomial

+ data = shuttle)

> anova(shuttle.glm2,shuttle.glm)

Analysis of Deviance Table

Model 1: cbind(r, m - r) ~ temperature + pressure

Model 2: cbind(r, m - r) ~ temperature

Resid. Df Resid. Dev Df Deviance

1 20 16.546

2 21 18.086 -1 -1.5407

> pchisq(1.5407, df=1, lower.tail = F)

[1] 0.2145136

(a) i. The model is

23∏
i=1

p(ri; πi) =
23∏
i=1

(
6

ri

)
πrii (1− πi)6−ri , i = 1, . . . , 23; 0 ≤ ri ≤ 6,

with

log

(
πi

1− πi

)
= β0 + β1tempi.

This model assumes that the 23 individual launches are independent, and also that
the damage to each of the six seals on a given launch are independent Bernoulli’s,
with the same probability. The second independence assumption seems more sus-
pect.

ii. This question wasn’t worded very well, because this cannot be assessed directly
without using β̂0; the answer “a 1 degree (F) increase in temperature is associated
with a decrease in the log-odds of O-ring damage of 0.1156, or a decrease in the
odds of damage of exp(−0.1156)” was quite acceptable, but more detailed answers
were accepted as well. There is not evidence in the R output of over-dispersion; the
residual deviance is 18 on 21 degrees of freedom.

iii. The predicted number of failures at 31◦F is 6∗exp(5.08−0.1156∗31)/{1+exp(5.08−
0.1156 ∗ 31)} = 6 ∗ 0.82 = 4.92. The estimated standard error could be computed
using the delta-method, or we could compute a confidence interval for β̂0 + β̂1 ∗ 31
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using var(β̂0+ β̂1∗31) = var(β̂0)+312var(β̂1)+2∗31cov(β̂0, β̂1), the entries of which
are all available using vcov, and convert the endpoints of this confidence interval
to endpoints for a confidence interval for π̂(31). We could also use predict.glm,

se=TRUE.

(b) The p-value is 0.2145.

(c) After deleting the points with 0 failures, the plot of number of failures against tem-
perature shows either no trend (if a linear model is fit), or a quadratic trend (if the
model is expanded to include this). It omits most of the evidence that low temperature
is associated with higher probability of failure, mainly because of the single launch at
75◦F with 2 failures.

This example is discussed in SM, and in many other books, including Faraway, and Maindon-
ald and Braun. The original statistical discussion was given in Fowlkes, et al in JASA. The
launch that took place at 31◦F on 28 January is the “Challenger disaster”; there are spec-
tacular images available via Wikipedia. The data analysis undertaken before the launch did
apparently ignore the launches with zero failures. Tufte (www.tufte.com) has also blamed
poor communication caused in part by the use of Powerpoint Slides for the poor decisions
made before the launch. The three books above, and the associated R files, all seem to
use slightly different data sets. The original data is available on-line in the report of the
presidential commission.

2. The gamma density is given by

f(y;µ, ν) =
1

Γ(ν)
yν−1

(
ν

µ

)ν
exp(−νy/µ), (1)

where E(y) = µ and var(Y ) = ν−1µ2.

(a) Show that this density has the form of a generalized linear model, and identify the
canonical parameter θ and the scale parameter φ in terms of µ and ν.

(b) Give an expression for the maximum likelihood estimate of ν, based on an i.i.d. sample
of size n from (1), using the notation ψ(ν) for the digamma function, d log Γ(ν)/dν.

(c) Suppose now the sample (y1, . . . , yn) is independent, but E(yj) = µj, where 1/µj =
xT
j β = ηj, with β = (β1, . . . , βp), p < n. Explain the motivation for the estimator

φ̃ = ν̃−1 =
1

n− p

n∑
j=1

(yj − µj(β̂))2

µj(β̂)
.

(a) The general form for a GLM is

f(y; θ, φ) = exp{yθ + b(θ)

φ
+ c(y, φ)},

and the gamma density is

f(y;µ, ν) = exp{
− 1
µ
y

1
ν

+
log( ν

µ
)

1
ν

− n log Γ(ν) + (ν − 1) log y,
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giving

θ = − 1

µ
, b(θ) = − log µ = − log(−1/θ), φ =

1

ν
, c(y, φ) = ν log ν−n log Γ(ν)+(ν−1) log y.

(b) The log-likelihood function based on a sample of size n is

`(µ, ν; y) =
n∑
j=1

(ν log yj − ν log µ− νyj/µ)− n log Γ(ν) + nν log ν,

leading to µ̂ = ȳ, and thence to

`p(ν) = nν log ν − n log Γ(ν) + νΣ(log yj − log ȳ − 1),

and thence to
log ν̂ − ψ(ν̂) = log ȳ − Σ log yj/n.

(c) This can be justified as an approximation to the maximum likelihood estimator, as in
the HW, with an adjustment for degrees of freedom, or, can be motivated by noting
that

E
n∑
j=1

(yj − µj)2

µ2
j

=
n∑
j=1

var(yj)

µ2
j

= nν−1,

and estimating µj by µ̂j, and adjusting the divisor accordingly.

The justification “it’s the Pearson χ2 estimator of φ proposed in the textbook” was also
acceptable.

3. (See Figure 2): An often-used data-set in statistics textbooks is the ozone data, which gives
daily average readings of ozone (O3) in Los Angeles, along with data on meteorological
variables. A linear model of ozone (O3) on temperature (temp), inversion base height (ibh)
and inversion base temperature (ibt) gave the following:

Call:

lm(formula = O3 ~ temp + ibh + ibt, data = ozone)

Residuals:

Min 1Q Median 3Q Max

-11.3224 -3.1913 -0.2591 2.9635 13.2860

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -7.7279822 1.6216623 -4.765 2.84e-06 ***

temp 0.3804408 0.0401582 9.474 < 2e-16 ***

ibh -0.0011862 0.0002567 -4.621 5.52e-06 ***

ibt -0.0058215 0.0101793 -0.572 0.568

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Residual standard error: 4.748 on 326 degrees of freedom

Multiple R-squared: 0.652, Adjusted R-squared: 0.6488

F-statistic: 203.6 on 3 and 326 DF, p-value: < 2.2e-16
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The plot of residuals against fitted values had some anomalies, so a more flexible model was
fit:

O3 = s(temp) + s(ibh) + s(ibt) + error

leading to

> summary(ammgcv)

Family: gaussian

Link function: identity

Formula:

O3 ~ s(temp) + s(ibh) + s(ibt)

Parametric coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 11.7758 0.2382 49.44 <2e-16 ***

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

Approximate significance of smooth terms:

edf Ref.df F p-value

s(temp) 3.386 4.259 20.553 7.69e-16 ***

s(ibh) 4.174 5.076 7.338 1.38e-06 ***

s(ibt) 2.112 2.731 1.612 0.187

---

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

R-sq.(adj) = 0.708 Deviance explained = 71.7\%

GCV score = 19.346 Scale est. = 18.72 n = 330

(a) How many extra degrees of freedom are used fitting the second model, compared to the
linear regression?

(b) In the plot of s(temp) from mgcv it appears that there may be a change in the slope at
about temp = 65. How might you use mgcv to test for the presence of a change point?

(c) In the plots of the smooth functions of temperature and of ibt, why do the standard
errors increase at the ends of the range of values? This is not the case however for the
smooth function of ibh: what is a possible explanation?

(a) 1 + 3.4 + 4.2 + 2.1 = 10.7 ≈ 11 degrees of freedom were used in the smooth fit, and 4
were used in the linear fit, of a difference of 6.7 ≈ 7.

(b) Could fit model A, with linear predictor s(temp) + s(ibh) + s(ibt) and model B,
with linear predictor temp + s(ibh) + s(ibt), and compare the residual deviances of
the two models with an (approximate) F -statistic

change in resid deviance/(3.4− 1)

resid deviance from B/(resid df)
.
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Or, could fit a “hockey stick” model with linear predictor α0 + α1x, x < 65 and β0 +
β1x, x > 65, with a constraint to make it continuous at x = 65.

(c) The point wise confidence intervals are wider at the endpoints because they are based
on less data. With ibt, there is actually more data at the right hand endpoint, which
suggests that the observed values were truncated, either due to instrument error or
instrument limitations.

4. The abstract for a study1 investigating biomarkers and mortality is reproduced in Figure
3. As explained in the editorial that accompanied the study, “Biomarkers are biological
molecules found in blood, body fluids, or tissues that may signal an abnormal process, a
condition, or a disease. Most current biomarkers are used to test an individuals risk of
developing a specific condition. There are none that accurately assess whether a person is
at risk of ill health generally, or likely to die soon from a disease.”

(a) Was this study a survey, an observational study, or an experiment? Explain.

(b) The response variable was survival time (as measured by age), and the potential ex-
planatory variables were levels of 106 different biomarkers, as well as other explanatory
variables associated with mortality, including sex, cholesterol, smoking, prevalent can-
cer, prevalent heart disease and prevalent cancer. The model was fit with the Estonian
data-base, and then validated in the Finnish data-base. In selecting biomarkers to fit
the model, a cut-off of p = 0.0005 was used. Why did the researchers select such a small
p-value to identify ‘significant’ biomarkers? Why are the other explanatory variables
included in the final model?

(c) The “biomarker summary score” for each individual in the study was computed as
β̂1x1i + β̂2x2i + β̂3x3i + β̂4x4i, where (x1i, x2i, x3i, x4i) is the vector of standardized
biomarker measures for individual i, and β̂ is estimated by proportional hazards regres-
sion of failure age on (x1i, x2i, x3i, x4i) and several other explanatory variables. Figure
4 shows a plot of this summary score, as a function of age. The authors say “The
biomarker score was moderately correlated with age (r = 0.38), yet extreme biomarker
score values were seen across all age groups. Excess mortality within 5 y of follow-up was
observed for higher age, but in particular in combination with an elevated biomarker
score”. Summarize the information from the plot and text excerpt, in language suitable
for explaining the main results in, for example, The Varsity.

(d) The proportional hazards model takes the form

h(t;x) = h0(t) exp(xTβ),

where h(t;x) = f(t;x)/{1 − F (t;x)} is the hazard function, or instantaneous failure
rate, at time t for an individual with covariates x. Show that

1− F (t;x) = {1− F0(t)}exp(x
Tβ).

What graphical check of the model does this result suggest?
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1. This was a (prospective) observational study: subjects were enrolled in a cohort study,
blood samples were taken at entry, and mortality assessed in a five-year window.

2. The researchers used a small p-value because they did 106 tests. Dividing the usual
cut-off, 0.05, by 100, is an approximate correction so that the global level of significance
is 0.05. This is known as the Bonferroni correction. The other explanatory variables
are included in the model because they are highly predictive of death, and if omitted
the impact of the biomarkers might be considerably exaggerated.

3. Because older people are more likely to die, it is important to check whether or not the
new blood tests are simply reflecting the individuals’ age. While there is evidence that
the blood test ‘biomarker score’ does increase with age, there is additional evidence
that high biomarker scores are associated with increased probability of death at any
age.

4. (a)

H(t;x) =

∫ t

0

h(u;x)du =

∫ t

0

f(u;x)du

1− F (u;x)
= − log{1− F (t;x)} = H0(t) exp(xTβ),

so we have

log{1− F (t;x)} = log{1− F0(t)} exp(xTβ), 1− F (t;x) = {1− F0(t)}exp(x
Tβ).

(b) We could group observations according to their value of x (if x is continuous
we could create groups of ‘similar’ x’s), and estimate the survivor function non-
parametrically within each group. Plots of these survivor functions should not
cross, if the proportional hazards assumption is valid. A plot of this type appears
in SM, in Figure 10.22.

1Fischer K, Kettunen J, Würtz P, Haller T, Havulinna AS, et al. (2014) Biomarker Profiling by Nuclear
Magnetic Resonance Spectroscopy for the Prediction of All-Cause Mortality. PLoS Med 11(2): e1001606.
doi:10.1371/journal.pmed.1001606
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Figure 2: Ozone data plotted against temperature, inversion base height (ibh), and inversion
base temperature (ibt), along with fitted smooth functions.
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Figure 3: Abstract from Fischer et al, 2014.
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Figure 4: From Fischer et al, 2014. Scatter plot of age versus biomarker summary score for
men and women from the Estonian Biobank cohort. The lines indicate a fit of age against
the biomarker summary score, with dashed lines denoting 95% prediction intervals.
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