Today

 deviance and scaled deviance 	SM errata
 nonlinear least squares 	§10.2
 proportion data and contingency tables 	§10.4, 10.5.2

- CD on observational studies
- HW 2 due February 28
- You should read: §10.1, 10.2 (excl. Ex. 10.7), 10.3, 10.4, 10.5.2 (excl. Ex.10.22, p.505–511), 10.6
- by end of reading week

- ► $y_j \sim f(y_j; \eta_j, \phi)$, independently, j = 1, ..., n
- assume ϕ is known
- ► log-likelihood function $\ell(\eta; y) = \sum_{j=1}^{n} \log f(y_j; \eta_j, \phi)$
- $\tilde{\eta} = \arg \sup_{\eta} \ell(\eta; y)$
- now suppose $\eta_j = \eta_j(\beta), \beta \in \mathbb{R}^p$
- $\blacktriangleright \hat{\eta} = \eta(\hat{\beta})$
- "scaled deviance"

$$D = 2\sum \{\log f(y_j; \tilde{\eta}_j) - \log f(y_j; \hat{\eta}_j)\}$$

• example: $y_j \sim N(\eta_j; \sigma^2); \quad \tilde{\eta}_j = y_j; \quad D = \sum (y_j - \hat{\eta}_j)^2 / \sigma^2$

SM §10.2

- $y_j \sim f(y_j; \eta_j, \phi)$, independently, $j = 1, \dots, n$
- assume ϕ is known
- ► log-likelihood function $\ell(\eta; y) = \sum_{j=1}^{n} \log f(y_j; \eta_j, \phi)$
- $\tilde{\eta} = \arg \sup_{\eta} \ell(\eta; y)$
- now suppose $\eta_j = \eta_j(\beta), \beta \in \mathbb{R}^p$
- $\blacktriangleright \hat{\eta} = \eta(\hat{\beta})$
- "scaled deviance"

$$D = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) - \log f(y_j; \hat{\eta}_j) \}$$

• example: $y_j \sim N(\eta_j; \sigma^2); \quad \tilde{\eta}_j = y_j; \quad D = \sum (y_j - \hat{\eta}_j)^2 / \sigma^2$

SM §10.2

- ► $y_j \sim f(y_j; \eta_j, \phi)$, independently, j = 1, ..., n SM §10.2
- assume ϕ is known
- ▶ log-likelihood function $\ell(\eta; y) = \sum_{j=1}^{n} \log f(y_j; \eta_j, \phi)$

• $\tilde{\eta} = \arg \sup_{\eta} \ell(\eta; y)$

- now suppose $\eta_j = \eta_j(\beta), \beta \in \mathbb{R}^p$
- $\blacktriangleright \hat{\eta} = \eta(\hat{\beta})$
- "scaled deviance"

$$D = 2\sum \{\log f(y_j; \tilde{\eta}_j) - \log f(y_j; \hat{\eta}_j)\}$$

- ► $y_j \sim f(y_j; \eta_j, \phi)$, independently, j = 1, ..., n SM §10.2
- assume ϕ is known
- ▶ log-likelihood function $\ell(\eta; y) = \sum_{j=1}^{n} \log f(y_j; \eta_j, \phi)$
- $\tilde{\eta} = \arg \sup_{\eta} \ell(\eta; y)$
- now suppose $\eta_j = \eta_j(\beta), \beta \in \mathbb{R}^p$
- $\blacktriangleright \hat{\eta} = \eta(\hat{\beta})$
- "scaled deviance"

$$D = 2\sum \{\log f(y_j; \tilde{\eta}_j) - \log f(y_j; \hat{\eta}_j)\}$$

- ► $y_j \sim f(y_j; \eta_j, \phi)$, independently, j = 1, ..., n SM §10.2
- assume ϕ is known
- ▶ log-likelihood function $\ell(\eta; y) = \sum_{j=1}^{n} \log f(y_j; \eta_j, \phi)$
- $\tilde{\eta} = \arg \sup_{\eta} \ell(\eta; y)$
- now suppose $\eta_j = \eta_j(\beta), \beta \in \mathbb{R}^p$

 $\blacktriangleright \hat{\eta} = \eta(\hat{\beta})$

"scaled deviance"

$$D = 2\sum \{\log f(y_j; \tilde{\eta}_j) - \log f(y_j; \hat{\eta}_j)\}$$

- ► $y_j \sim f(y_j; \eta_j, \phi)$, independently, j = 1, ..., n SM §10.2
- assume ϕ is known
- ▶ log-likelihood function $\ell(\eta; y) = \sum_{j=1}^{n} \log f(y_j; \eta_j, \phi)$
- $\tilde{\eta} = \arg \sup_{\eta} \ell(\eta; y)$
- now suppose $\eta_j = \eta_j(\beta), \beta \in \mathbb{R}^p$
- $\hat{\eta} = \eta(\hat{\beta})$
- "scaled deviance

$$D = 2\sum \{\log f(y_j; \tilde{\eta}_j) - \log f(y_j; \hat{\eta}_j)\}$$

- ► $y_j \sim f(y_j; \eta_j, \phi)$, independently, j = 1, ..., n SM §10.2
- assume ϕ is known
- ▶ log-likelihood function $\ell(\eta; y) = \sum_{j=1}^{n} \log f(y_j; \eta_j, \phi)$
- $\tilde{\eta} = \arg \sup_{\eta} \ell(\eta; y)$
- now suppose $\eta_j = \eta_j(\beta), \beta \in \mathbb{R}^p$
- $\blacktriangleright \hat{\eta} = \eta(\hat{\beta})$
- "scaled deviance"

$$D = 2\sum \{\log f(y_j; \tilde{\eta}_j) - \log f(y_j; \hat{\eta}_j)\}$$

- ► $y_j \sim f(y_j; \eta_j, \phi)$, independently, j = 1, ..., n SM §10.2
- assume ϕ is known
- ▶ log-likelihood function $\ell(\eta; y) = \sum_{j=1}^{n} \log f(y_j; \eta_j, \phi)$
- $\tilde{\eta} = \arg \sup_{\eta} \ell(\eta; y)$
- now suppose $\eta_j = \eta_j(\beta), \beta \in \mathbb{R}^p$

•
$$\hat{\eta} = \eta(\hat{\beta})$$

"scaled deviance"

$$D = 2\sum \{\log f(y_j; \tilde{\eta}_j) - \log f(y_j; \hat{\eta}_j)\}$$

- ▶ if two nested models are to be compared, A ⊂ B
- then two scaled deviances are computed
- $\blacktriangleright D_A = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^A) \}$
- $\triangleright D_B = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^B) \}$
- difference is free of $\tilde{\eta}$
- difference is log-likelihood ratio statistic for testing model A (within model B)
- $\blacktriangleright D_A D_B \sim \chi^2_{\rho_B \rho_A}$
- ▶ if *φ* is unknown, then must be estimated, before *D_A* or *D_B* can be computed

- ▶ if two nested models are to be compared, A ⊂ B
- then two scaled deviances are computed
- $\blacktriangleright D_A = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^A) \}$
- $\triangleright D_B = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^B) \}$
- difference is free of $\tilde{\eta}$
- difference is log-likelihood ratio statistic for testing model A (within model B)
- $\blacktriangleright D_A D_B \sim \chi^2_{\rho_B \rho_A}$
- ▶ if *φ* is unknown, then must be estimated, before *D_A* or *D_B* can be computed

- ▶ if two nested models are to be compared, A ⊂ B
- then two scaled deviances are computed
- $\blacktriangleright D_A = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^A) \}$
- $\triangleright D_B = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^B) \}$
- difference is free of $\tilde{\eta}$
- difference is log-likelihood ratio statistic for testing model A (within model B)
- $\blacktriangleright D_A D_B \sim \chi^2_{\rho_B \rho_A}$
- ▶ if *φ* is unknown, then must be estimated, before *D_A* or *D_B* can be computed

- ▶ if two nested models are to be compared, A ⊂ B
- then two scaled deviances are computed
- $\blacktriangleright D_A = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^A) \}$
- $D_B = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^B) \}$
- difference is free of $\tilde{\eta}$
- difference is log-likelihood ratio statistic for testing model A (within model B)
- $\blacktriangleright D_A D_B \sim \chi^2_{\rho_B \rho_A}$
- ▶ if *φ* is unknown, then must be estimated, before *D_A* or *D_B* can be computed

- ▶ if two nested models are to be compared, A ⊂ B
- then two scaled deviances are computed
- $\blacktriangleright D_A = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^A) \}$
- $D_B = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^B) \}$
- difference is free of $\tilde{\eta}$
- difference is log-likelihood ratio statistic for testing model A (within model B)
- $\blacktriangleright D_A D_B \sim \chi^2_{p_B p_A}$
- ▶ if *φ* is unknown, then must be estimated, before *D_A* or *D_B* can be computed

- ▶ if two nested models are to be compared, A ⊂ B
- then two scaled deviances are computed
- $\blacktriangleright D_A = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^A) \}$
- $\blacktriangleright D_B = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^B) \}$
- difference is free of $\tilde{\eta}$
- difference is log-likelihood ratio statistic for testing model A (within model B)
- $\blacktriangleright D_A D_B \sim \chi^2_{\rho_B \rho_A}$
- If *φ* is unknown, then must be estimated, before *D_A* or *D_B* can be computed

- ▶ if two nested models are to be compared, A ⊂ B
- then two scaled deviances are computed
- $\blacktriangleright D_A = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^A) \}$
- $\blacktriangleright D_B = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^B) \}$
- difference is free of $\tilde{\eta}$
- difference is log-likelihood ratio statistic for testing model A (within model B)
- $D_A D_B \sim \chi^2_{p_B p_A}$
- If *φ* is unknown, then must be estimated, before *D_A* or *D_B* can be computed

- ▶ if two nested models are to be compared, A ⊂ B
- then two scaled deviances are computed
- $\blacktriangleright D_A = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^A) \}$
- $\blacktriangleright D_B = 2 \sum \{ \log f(y_j; \tilde{\eta}_j) \log f(y_j; \hat{\eta}_j^B) \}$
- difference is free of $\tilde{\eta}$
- difference is log-likelihood ratio statistic for testing model A (within model B)
- $\blacktriangleright D_A D_B \sim \chi^2_{\rho_B \rho_A}$
- ► if *φ* is unknown, then must be estimated, before *D_A* or *D_B* can be computed

- ▶ *φ* is either 1 (Binomial, Poisson) or unknown (Normal, Gamma, inverse Gaussian)
- when known, D measures 'goodness of fit' of the fitted model
- because it compares it to the saturated model $\ell(\tilde{\eta}; y)$
- when unknown, it appears as a scale factor in D

► thus
$$\frac{(D_A - D_B)/(p_B - p_A)}{\hat{\phi}} \sim F_{p_B - p_A, p_E}$$

$$\bullet \quad \hat{\phi} = \frac{1}{n-p} \sum_{j=1}^{n} \frac{(y_j - \hat{\mu}_j)^2}{V(\hat{\mu}_j)}$$

- ▶ if Poisson or Binomial have over dispersion, φ̂ > 1, then D no longer measures goodness of fit
- multiply estimate of $var(\hat{\beta}_j)$ by $\hat{\phi}$

- when known, D measures 'goodness of fit' of the fitted model
- because it compares it to the saturated model $\ell(\tilde{\eta}; y)$
- when unknown, it appears as a scale factor in D

► thus
$$\frac{(D_A - D_B)/(p_B - p_A)}{\hat{\phi}} \sim F_{\rho_B - \rho_A, \rho_E}$$

$$\bullet \quad \hat{\phi} = \frac{1}{n-p} \sum_{j=1}^{n} \frac{(y_j - \hat{\mu}_j)^2}{V(\hat{\mu}_j)}$$

- ▶ if Poisson or Binomial have over dispersion, φ̂ > 1, then D no longer measures goodness of fit
- multiply estimate of $var(\hat{\beta}_j)$ by $\hat{\phi}$

- when known, D measures 'goodness of fit' of the fitted model
- because it compares it to the saturated model $\ell(\tilde{\eta}; y)$
- ▶ when unknown, it appears as a scale factor in ▶ thus $\frac{(D_A - D_B)/(p_B - p_A)}{\hat{\phi}} \sim F_{p_B - p_A, p_B}$
- $\hat{\phi}$ estimated under the larger model, *B*

$$\bullet \quad \hat{\phi} = \frac{1}{n-p} \sum_{j=1}^{n} \frac{(y_j - \hat{\mu}_j)^2}{V(\hat{\mu}_j)}$$

- ▶ if Poisson or Binomial have over dispersion, $\hat{\phi} > 1$, then *D* no longer measures goodness of fit
- multiply estimate of $var(\hat{\beta}_j)$ by $\hat{\phi}$

- ▶ *φ* is either 1 (Binomial, Poisson) or unknown (Normal, Gamma, inverse Gaussian)
- when known, D measures 'goodness of fit' of the fitted model
- because it compares it to the saturated model $\ell(\tilde{\eta}; y)$
- when unknown, it appears as a scale factor in D
- thus $\frac{(D_A D_B)/(p_B p_A)}{\hat{\phi}} \sim F_{p_B p_A, p_B}$
- $\hat{\phi}$ estimated under the larger model, *B*

$$\bullet \quad \hat{\phi} = \frac{1}{n-p} \sum_{j=1}^{n} \frac{(y_j - \hat{\mu}_j)^2}{V(\hat{\mu}_j)}$$

- ▶ if Poisson or Binomial have over dispersion, φ̂ > 1, then D no longer measures goodness of fit
- multiply estimate of $var(\hat{\beta}_i)$ by $\hat{\phi}$

- when known, D measures 'goodness of fit' of the fitted model
- because it compares it to the saturated model $\ell(\tilde{\eta}; y)$
- when unknown, it appears as a scale factor in D

► thus
$$\frac{(D_A - D_B)/(\rho_B - \rho_A)}{\hat{\phi}} \sim F_{\rho_B - \rho_A, \rho_E}$$

$$\hat{\phi} = \frac{1}{n-p} \sum_{j=1}^{n} \frac{(y_j - \hat{\mu}_j)^2}{V(\hat{\mu}_j)}$$

- ▶ if Poisson or Binomial have over dispersion, φ̂ > 1, then D no longer measures goodness of fit
- multiply estimate of $var(\hat{\beta}_i)$ by $\hat{\phi}$

- when known, D measures 'goodness of fit' of the fitted model
- because it compares it to the saturated model $\ell(\tilde{\eta}; y)$
- when unknown, it appears as a scale factor in D

► thus
$$\frac{(D_A - D_B)/(p_B - p_A)}{\hat{\phi}} \sim F_{p_B - p_A, p_E}$$

$$\bullet \ \hat{\phi} = \frac{1}{n-p} \sum_{j=1}^{n} \frac{(y_j - \hat{\mu}_j)^2}{V(\hat{\mu}_j)}$$

- ▶ if Poisson or Binomial have over dispersion, φ̂ > 1, then D no longer measures goodness of fit
- multiply estimate of $var(\hat{\beta}_j)$ by $\hat{\phi}$

- when known, D measures 'goodness of fit' of the fitted model
- because it compares it to the saturated model $\ell(\tilde{\eta}; y)$
- when unknown, it appears as a scale factor in D

► thus
$$\frac{(D_A - D_B)/(p_B - p_A)}{\hat{\phi}} \sim F_{p_B - p_A, p_B}$$

$$\bullet \quad \hat{\phi} = \frac{1}{n-p} \sum_{j=1}^{n} \frac{(y_j - \hat{\mu}_j)^2}{V(\hat{\mu}_j)}$$

- ▶ if Poisson or Binomial have over dispersion, φ̂ > 1, then D no longer measures goodness of fit
- multiply estimate of $var(\hat{\beta}_j)$ by $\hat{\phi}$

- when known, D measures 'goodness of fit' of the fitted model
- because it compares it to the saturated model $\ell(\tilde{\eta}; y)$
- when unknown, it appears as a scale factor in D

► thus
$$\frac{(D_A - D_B)/(p_B - p_A)}{\hat{\phi}} \sim F_{p_B - p_A, p_E}$$

$$\bullet \quad \hat{\phi} = \frac{1}{n-p} \sum_{j=1}^{n} \frac{(y_j - \hat{\mu}_j)^2}{V(\hat{\mu}_j)}$$

- ► if Poisson or Binomial have over dispersion, φ̂ > 1, then D no longer measures goodness of fit
- multiply estimate of var($\hat{\beta}_i$) by $\hat{\phi}$

- when known, D measures 'goodness of fit' of the fitted model
- because it compares it to the saturated model $\ell(\tilde{\eta}; y)$
- when unknown, it appears as a scale factor in D

• thus
$$\frac{(D_A - D_B)/(p_B - p_A)}{\hat{\phi}} \sim F_{p_B - p_A, p_B}$$

$$\bullet \quad \hat{\phi} = \frac{1}{n-p} \sum_{j=1}^{n} \frac{(y_j - \hat{\mu}_j)^2}{V(\hat{\mu}_j)}$$

- ► if Poisson or Binomial have over dispersion, φ̂ > 1, then D no longer measures goodness of fit
- multiply estimate of $var(\hat{\beta}_j)$ by $\hat{\phi}$

 $\S{10.2}$

- $y_j \sim f(y_j; \eta_j, \phi)$, independently, $j = 1, \dots, n$
- $\eta_j = \eta_j(\beta)$
- \hat{eta} can be computed by iteratively re-weighted LS
- when (i) ϕ is fixed and

(ii) $J \leftarrow I$ observed Fisher info. replaced by expected Fisher info.

$$\hat{\beta} = (X^{\mathrm{T}}WX)^{-1}X^{\mathrm{T}}Wz \tag{1}$$

$$\succ X = X(\hat{\beta}) = \left. \frac{\partial \eta(\beta)}{\partial \beta^{\mathrm{T}}} \right|_{\hat{\beta}}$$

- $W = W(\hat{\beta}) = \operatorname{diag}(w_j); \quad w_j = \mathsf{E}(-\partial^2 \ell_j / \partial \eta_j^2)$
- ► $z = z(\hat{\beta}) = (X\beta + W^{-1}u);$ $u_j(\hat{\beta}) = \partial \ell_j(\eta) / \partial \eta_j$
- form of (1) gives definitions of residuals, influence, leverage, by analogy with linear model §8.6.1, 8.6.3, 10.2.3

§10.2

- y_j ~ f(y_j; η_j, φ), independently, j = 1,..., n
 η_j = η_j(β)
- $\hat{\beta}$ can be computed by iteratively re-weighted LS
- when (i) ϕ is fixed and

(ii) $J \leftarrow I$ observed Fisher info. replaced by expected Fisher info.

$$\hat{\beta} = (X^{\mathrm{T}}WX)^{-1}X^{\mathrm{T}}Wz \tag{1}$$

$$\blacktriangleright X = X(\hat{\beta}) = \left. \frac{\partial \eta(\beta)}{\partial \beta^{\mathrm{T}}} \right|_{\hat{\beta}}$$

- $W = W(\hat{\beta}) = \operatorname{diag}(w_j); \quad w_j = \mathsf{E}(-\partial^2 \ell_j / \partial \eta_j^2)$
- ► $z = z(\hat{\beta}) = (X\beta + W^{-1}u);$ $u_j(\hat{\beta}) = \partial \ell_j(\eta) / \partial \eta_j$
- form of (1) gives definitions of residuals, influence, leverage, by analogy with linear model §8.6.1, 8.6.3, 10.2.3

§10.2

- $y_j \sim f(y_j; \eta_j, \phi)$, independently, $j = 1, \dots, n$
- $\eta_j = \eta_j(\beta)$
- $\hat{\beta}$ can be computed by iteratively re-weighted LS
- when (i) ϕ is fixed and
 - (ii) $J \leftarrow I$ observed Fisher info. replaced by expected Fisher info.

$$\hat{\beta} = (X^{\mathrm{T}}WX)^{-1}X^{\mathrm{T}}Wz \tag{1}$$

$$\blacktriangleright X = X(\hat{\beta}) = \left. \frac{\partial \eta(\beta)}{\partial \beta^{\mathrm{T}}} \right|_{\hat{\beta}}$$

- $W = W(\hat{\beta}) = \operatorname{diag}(w_j); \quad w_j = \mathsf{E}(-\partial^2 \ell_j / \partial \eta_j^2)$
- ► $z = z(\hat{\beta}) = (X\beta + W^{-1}u);$ $u_j(\hat{\beta}) = \partial \ell_j(\eta) / \partial \eta_j$
- form of (1) gives definitions of residuals, influence, leverage, by analogy with linear model §8.6.1, 8.6.3, 10.2.3

§10.2

- $y_j \sim f(y_j; \eta_j, \phi)$, independently, $j = 1, \dots, n$
- $\eta_j = \eta_j(\beta)$
- $\hat{\beta}$ can be computed by iteratively re-weighted LS
- when (i) ϕ is fixed and

(ii) $J \leftarrow I$ observed Fisher info. replaced by expected Fisher info.

$$\hat{\beta} = (X^{\mathrm{T}}WX)^{-1}X^{\mathrm{T}}Wz \tag{1}$$

$$\blacktriangleright X = X(\hat{\beta}) = \left. \frac{\partial \eta(\beta)}{\partial \beta^{\mathrm{T}}} \right|_{\hat{\beta}}$$

- $\blacktriangleright W = W(\hat{\beta}) = \operatorname{diag}(w_j); \quad w_j = \mathsf{E}(-\partial^2 \ell_j / \partial \eta_j^2)$
- ► $z = z(\hat{\beta}) = (X\beta + W^{-1}u);$ $u_j(\hat{\beta}) = \partial \ell_j(\eta) / \partial \eta_j$
- form of (1) gives definitions of residuals, influence, leverage, by analogy with linear model §8.6.1, 8.6.3, 10.2.3

§10.2

- $y_j \sim f(y_j; \eta_j, \phi)$, independently, $j = 1, \dots, n$
- $\eta_j = \eta_j(\beta)$
- $\hat{\beta}$ can be computed by iteratively re-weighted LS
- when (i) ϕ is fixed and

(ii) $J \leftarrow I$ observed Fisher info. replaced by expected Fisher info.

$$\hat{\beta} = (X^{\mathrm{T}}WX)^{-1}X^{\mathrm{T}}Wz \tag{1}$$

$$\blacktriangleright X = X(\hat{\beta}) = \left. \frac{\partial \eta(\beta)}{\partial \beta^{\mathrm{T}}} \right|_{\hat{\beta}}$$

- $\blacktriangleright W = W(\hat{\beta}) = \operatorname{diag}(w_j); \quad w_j = \mathsf{E}(-\partial^2 \ell_j / \partial \eta_j^2)$
- ► $z = z(\hat{\beta}) = (X\beta + W^{-1}u);$ $u_j(\hat{\beta}) = \partial \ell_j(\eta) / \partial \eta_j$
- form of (1) gives definitions of residuals, influence, leverage, by analogy with linear model §8.6.1, 8.6.3, 10.2.3

§10.2

- $y_j \sim f(y_j; \eta_j, \phi)$, independently, $j = 1, \dots, n$
- $\eta_j = \eta_j(\beta)$
- $\hat{\beta}$ can be computed by iteratively re-weighted LS
- when (i) ϕ is fixed and

(ii) $J \leftarrow I$ observed Fisher info. replaced by expected Fisher info.

$$\hat{\beta} = (X^{\mathrm{T}}WX)^{-1}X^{\mathrm{T}}Wz \tag{1}$$

$$\blacktriangleright X = X(\hat{\beta}) = \left. \frac{\partial \eta(\beta)}{\partial \beta^{\mathrm{T}}} \right|_{\hat{\beta}}$$

• $W = W(\hat{\beta}) = \operatorname{diag}(w_j); \quad w_j = \mathsf{E}(-\partial^2 \ell_j / \partial \eta_j^2)$

$$\blacktriangleright z = z(\hat{\beta}) = (X\beta + W^{-1}u); \quad u_j(\hat{\beta}) = \partial \ell_j(\eta) / \partial \eta_j$$

 form of (1) gives definitions of residuals, influence, leverage, by analogy with linear model §8.6.1, 8.6.3, 10.2.3

§10.2

- $y_j \sim f(y_j; \eta_j, \phi)$, independently, $j = 1, \ldots, n$
- $\eta_j = \eta_j(\beta)$
- $\hat{\beta}$ can be computed by iteratively re-weighted LS
- when (i) ϕ is fixed and

(ii) $J \leftarrow I$ observed Fisher info. replaced by expected Fisher info.

$$\hat{\beta} = (X^{\mathrm{T}}WX)^{-1}X^{\mathrm{T}}Wz \tag{1}$$

$$X = X(\hat{\beta}) = \left. \frac{\partial \eta(\beta)}{\partial \beta^{\mathrm{T}}} \right|_{\hat{\beta}}$$

- $W = W(\hat{\beta}) = \operatorname{diag}(w_j); \quad w_j = \mathsf{E}(-\partial^2 \ell_j / \partial \eta_j^2)$
- $z = z(\hat{\beta}) = (X\beta + W^{-1}u);$ $u_j(\hat{\beta}) = \partial \ell_j(\eta) / \partial \eta_j$
- form of (1) gives definitions of residuals, influence, leverage, by analogy with linear model §8.6.1, 8.6.3, 10.2.3

§10.2

- $y_j \sim f(y_j; \eta_j, \phi)$, independently, $j = 1, \ldots, n$
- $\eta_j = \eta_j(\beta)$
- $\hat{\beta}$ can be computed by iteratively re-weighted LS
- when (i) ϕ is fixed and

(ii) $J \leftarrow I$ observed Fisher info. replaced by expected Fisher info.

$$\hat{\beta} = (X^{\mathrm{T}}WX)^{-1}X^{\mathrm{T}}Wz \tag{1}$$

$$X = X(\hat{\beta}) = \frac{\partial \eta(\beta)}{\partial \beta^{\mathrm{T}}}\Big|_{\hat{\beta}}$$

$$M = M(\hat{\beta}) = \operatorname{diag}(w); \quad w = \mathbb{E}(-\frac{\partial^2 \ell_1}{\partial r^2})$$

• $W = W(\hat{\beta}) = \text{diag}(w_j); \quad w_j = \mathsf{E}(-\partial^2 \ell_j / \partial \eta_j^2)$

►
$$z = z(\hat{\beta}) = (X\beta + W^{-1}u);$$
 $u_j(\hat{\beta}) = \partial \ell_j(\eta) / \partial \eta_j$

 form of (1) gives definitions of residuals, influence, leverage, by analogy with linear model §8.6.1, 8.6.3, 10.2.3

§10.2

- $y_j \sim f(y_j; \eta_j, \phi)$, independently, $j = 1, \dots, n$
- $\eta_j = \eta_j(\beta)$

- $\hat{\beta}$ can be computed by iteratively re-weighted LS
- when (i) ϕ is fixed and

(ii) $J \leftarrow I$ observed Fisher info. replaced by expected Fisher info.

$$\hat{\beta} = (X^{\mathrm{T}}WX)^{-1}X^{\mathrm{T}}Wz \tag{1}$$

$$X = X(\hat{\beta}) = \frac{\partial \eta(\beta)}{\partial \beta^{\mathrm{T}}}\Big|_{\hat{\beta}}$$

• $W = W(\hat{\beta}) = \operatorname{diag}(w_j); \quad w_j = \mathsf{E}(-\partial^2 \ell_j / \partial \eta_j^2)$

$$\blacktriangleright z = z(\hat{\beta}) = (X\beta + W^{-1}u); \quad u_j(\hat{\beta}) = \partial \ell_j(\eta) / \partial \eta_j$$

 form of (1) gives definitions of residuals, influence, leverage, by analogy with linear model §8.6.1, 8.6.3, 10.2.3

Calcium data: Example 10.1

10.1 · Introduction

Table 10.1 Calcium uptake (nmoles/mg) of cells suspended in a solution of radioactive calcium, as a function of time suspended (minutes) (Rawlings, 1988, p. 403).

Time (minutes)	Calcium uptake (nmoles/mg)		
0.45	0.34170	-0.00438	0.82531
1.30	1.77967	0.95384	0.64080
2.40	1.75136	1.27497	1.17332
4.00	3.12273	2.60958	2.57429
6.10	3.17881	3.00782	2.67061
8.05	3.05959	3.94321	3.43726
11.15	4.80735	3.35583	2.78309
13.15	5.13825	4.70274	4.25702
15.00	3.60407	4.15029	3.42484

Figure 10.1 Calcium uptake (nmoles/mg) of cells suspended in a solution of radioactive calcium, as a function of time suspended (minutes).

- ► model $E(y_j) = \beta_0 \{1 - \exp(-x_j/\beta_1)\}, \quad y_j = E(y_j) + \epsilon_j, \ \epsilon_j \sim N(0, \sigma^2)$
- fitting:

$$\min_{\beta_0,\beta_1}\sum_{j=1}^n(y_j-\eta_j)^2$$

use nls or nlm; requires starting values

```
>> library(SMPracticals); data(calcium)
> fit = nls(cal ` b0*(1-exp(-time/b1)), data = calcium, start = list(b0=5,b1=5))
> summary(fit)
Formula: cal ` b0 * (1 - exp(-time/b1))
Parameters:
    Estimate Std. Error t value Pr(>|t|)
b0 4.3094 0.3029 14.226 1.73e=13 ***
b1 4.7967 0.9047 5.302 1.71e=05 ***
---
Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 ` ' 1
Residual standard error: 0.5464 on 25 degrees of freedom
Number of iterations to convergence: 3
Achieved convergence tolerance: 9.55e=07
```


Figure 10.4 Fit of a nonlinear model to the calcium data. Upper left: contours for $\ell_p(\beta_0, \beta_1)$, Upper right: contons for $\ell_p(\beta_0, \gamma_1)$, where $\gamma_1 = 1/\beta_1$. Lower left: standardized residuals plotted against time. Lower right: plot of Cook statistics against $h_1(1 - h)$, where h is leverage.

o

- there are 3 observations at each time point
- can fit a model with a different parameter for each time: E(y_j) = η_j + ε_j
- the nonlinear model is nested within this; constrains η_j as above
- anova(lm(cal ~ factor(time), data = calcium))
- Analysis of Variance Table

- checking constant variance assumption
- estimates of σ² at each time, each with 2 degrees of freedom

```
> s2 = tapply(calcium$cal, factor(calcium$time), var)
> s2
> s2
0.45
1.3
2.4
4
6.1
8.05
0.17367258
0.34616902
0.09523507
0.09422579
0.06686923
0.19656739
11.15
13.15
1
0.0876166
0.19415027
0.14279290
> plot(sort(s2), qchisq((1:9)/10,2))
```


Example

Factmonster

Year		Time	
1924	Clas Thunberg, FIN	2:20.8	
1928	Clas Thunberg, FIN	2:21.1	
1932	Jack Shea, USA	2:57.5	
1936	Charles Mathisen, NOR	2:19.2	OR
1948	Sverre Farstad, NOR	2:17.6	OR
1952	Hjalmar Andersen, NOR	2:20.4	
1956	(TIE) Yevgeny Grishin, USSR	2:08.6	WR
	& Yuri Mikhailov, USSR	2:08.6	WR
1960	(TIE) Roald Aas, NOR	2:10.4	
	& Yevgeny Grishin, USSR	2:10.4	
1964	Ants Antson, USSR	2:10.3	
1968	Kees Verkerk, NED	2:03.4	OR
1972	Ard Schenk, NED	2:02.96	OR
1976	Jan Egil Storholt, NOR	1:59.38	OR
1980	Eric Heiden, USA	1:55.44	OR
1984	Gaétan Boucher, CAN	1:58.36	
1988	Andre Hoffman, E. Ger	1:52.06	WR
1992	Johann Olav Koss, NOR	1:54.81	
1994	Johann Olav Koss, NOR	1:51.29	WR
1998	Aadne Sondral, NOR	1:47.87	WR
2002	Derek Parra, USA	1:43.95	WR

1500 meters

Nonlinear model

- ► $E(y_j) = \beta_0 + \beta_1 \exp(-\beta_2 x_j)$ "Analysis of running times in Olympic games"
- winning times are decreasing; rate of improvement is decreasing; limiting time (β₀)

Nonlinear model

- ► $E(y_j) = \beta_0 + \beta_1 \exp(-\beta_2 x_j)$ "Analysis of running times in Olympic games"
- winning times are decreasing; rate of improvement is decreasing; limiting time (β₀)


```
> plot(year, fifteen, xlab = "year", ylab = "winning time", main = "1500m mens speed
skating Olympic winning times")
> plot(year, fifteen, xlab = "year", ylab = "winning time", main = "Olympic winning
times", sub = "1500m mens speed skating")
> x <- year-1924
> nls(y \sim b0 + b1*exp(-b2*x), start=(list(b0=110, b1= 1, b2=.5)))
Error in nls(v \sim b0 + b1 * exp(-b2 * x), start = (list(b0 = 110, b1 = 1, :
 parameters without starting value in 'data': y
> nls(fifteen ~ b0 + b1*exp(-b2*x), start=list(b0=110, b1=1, b2=0.5))
Error in numericDeriv(form[[3L]], names(ind), env) :
 Missing value or an infinity produced when evaluating the model
> nls(fifteen ~ b0 + b1*exp(-b2*x), start=list(b0=100, b1=1, b2=0.5))
Error in numericDeriv(form[[3L]], names(ind), env) :
 Missing value or an infinity produced when evaluating the model
> nls(fifteen \sim b0 + b1*exp(-b2*x), start=list(b0=100, b1=1, b2=0.05))
Error in nls(fifteen \sim b0 + b1 * exp(-b2 * x), start = list(b0 = 100, :
  singular aradient
> nls(fifteen ~ b0 + b1*exp(-b2*x), start=list(b0=100, b1=1, b2=0.1))
Error in numericDeriv(form[[3L]], names(ind), env) :
 Missing value or an infinity produced when evaluating the model
> nls(fifteen ~ b0 + b1*exp(-b2*x), start=list(b0=100, b1=1, b2=1))
Error in numericDeriv(form[[3L]], names(ind), env) :
 Missing value or an infinity produced when evaluating the model
> nls(fifteen ~ b0 + b1*exp(-b2*x), start=list(b0=100, b1=.1, b2=1))
Error in numericDeriv(form[[3L]], names(ind), env) :
 Missing value or an infinity produced when evaluating the model
> nls(fifteen ~ b0 + b1*exp(-b2*x), start=list(b0=100, b1=.1, b2=.01))
Error in numericDeriv(form[[3L]], names(ind), env) :
 Missing value or an infinity produced when evaluating the model
```

all fifteen ba black black

► suppose $Z_j = x_j^T \gamma + \sigma \epsilon_j$, j = 1, ..., n; $\epsilon_j \sim f(\cdot)$ ► $Y_j = 1$ if $Z_j > 0$; otherwise 0

 $\Pr(Y_j = 1) = 1 - F(-x_j^T \gamma / \sigma) = 1 - F(-x_j^T \beta) = F(x_j^T \beta), \text{if } \dots$

examples (Table 10.7)

Example 10.17 considers how much information is lost in going from Z to Y

▶ in special case where $x_j = -1, -0.9, ..., 0.9, 1$, $z_j = 0.5 + 2x_j + \epsilon_j$, $\epsilon_j \sim N(0, 1)$ $y_i = 1(z_i > 0)$

► suppose
$$Z_j = x_j^T \gamma + \sigma \epsilon_j$$
, $j = 1, ..., n$; $\epsilon_j \sim f(\cdot)$

 $Pr(Y_j = 1) = 1 - F(-x_j^T \gamma / \sigma) = 1 - F(-x_j^T \beta) = F(x_j^T \beta)$, if ...

examples (Table 10.7)

Example 10.17 considers how much information is lost in going from Z to Y

▶ in special case where $x_j = -1, -0.9, ..., 0.9, 1$, $z_j = 0.5 + 2x_j + \epsilon_j$, $\epsilon_j \sim N(0, 1)$ $y_i = 1(z_i > 0)$

► suppose
$$Z_j = x_j^T \gamma + \sigma \epsilon_j$$
, $j = 1, ..., n$; $\epsilon_j \sim f(\cdot)$
► $Y_j = 1$ if $Z_j > 0$; otherwise 0

$$\Pr(Y_j = 1) = 1 - F(-x_j^T \gamma / \sigma) = 1 - F(-x_j^T \beta) = F(x_j^T \beta), \text{ if } \dots$$

► examples (Table 10.7)
logistic
$$F(u) = e^u/(1 + e^u)$$
 logit $log\{p/(1 - p)\} = x^T\beta$
normal $F(u) = \Phi(u)$ probit $\Phi^{-1}(p) = x^T\beta$
log-Weibull $F(u) = 1 - \exp(-e^u)$ log-log $-\log\{-\log(p)\} = x^T\beta$
Gumbel $F(u) = \exp\{-e^{-u}\}$ c-log-log $\log\{-\log(1 - p)\} = x^T\beta$

Example 10.17 considers how much information is lost in going from Z to Y

▶ in special case where $x_j = -1, -0.9, ..., 0.9, 1,$ $z_j = 0.5 + 2x_j + \epsilon_j, \quad \epsilon_j \sim N(0, 1)$ $y_i = 1(z_i > 0)$

► suppose
$$Z_j = x_j^T \gamma + \sigma \epsilon_j$$
, $j = 1, ..., n$; $\epsilon_j \sim f(\cdot)$

•
$$Y_j = 1$$
 if $Z_j > 0$; otherwise 0

$$\Pr(Y_j = 1) = 1 - F(-x_j^T \gamma / \sigma) = 1 - F(-x_j^T \beta) = F(x_j^T \beta), \text{ if } \dots$$

► examples (Table 10.7)
logistic
$$F(u) = e^{u}/(1 + e^{u})$$
 logit $log\{p/(1 - p)\} = x^{T}\beta$
normal $F(u) = \Phi(u)$ probit $\Phi^{-1}(p) = x^{T}\beta$
log-Weibull $F(u) = 1 - \exp(-e^{u})$ log-log $-\log\{-\log(p)\} = x^{T}\beta$
Gumbel $F(u) = \exp\{-e^{-u}\}$ c-log-log $\log\{-\log(1 - p)\} = x^{T}\beta$

Example 10.17 considers how much information is lost in going from Z to Y

▶ in special case where $x_j = -1, -0.9, ..., 0.9, 1$, $z_j = 0.5 + 2x_j + \epsilon_j$, $\epsilon_j \sim N(0, 1)$ $y_i = 1(z_i > 0)$

► suppose
$$Z_j = x_j^T \gamma + \sigma \epsilon_j$$
, $j = 1, ..., n$; $\epsilon_j \sim f(\cdot)$

•
$$Y_j = 1$$
 if $Z_j > 0$; otherwise 0

$$\Pr(Y_j = 1) = 1 - F(-x_j^T \gamma / \sigma) = 1 - F(-x_j^T \beta) = F(x_j^T \beta), \text{ if } \dots$$

► examples (Table 10.7)
logistic
$$F(u) = e^{u}/(1 + e^{u})$$
 logit $log\{p/(1 - p)\} = x^{T}\beta$
normal $F(u) = \Phi(u)$ probit $\Phi^{-1}(p) = x^{T}\beta$
log-Weibull $F(u) = 1 - \exp(-e^{u})$ log-log $-\log\{-\log(p)\} = x^{T}\beta$
Gumbel $F(u) = \exp\{-e^{-u}\}$ c-log-log $\log\{-\log(1 - p)\} = x^{T}\beta$

Example 10.17 considers how much information is lost in going from Z to Y

▶ in special case where
$$x_j = -1, -0.9, ..., 0.9, 1$$
,
 $z_j = 0.5 + 2x_j + \epsilon_j$, $\epsilon_j \sim N(0, 1)$
 $y_j = 1(z_j > 0)$

►

► suppose
$$Z_j = x_j^T \gamma + \sigma \epsilon_j$$
, $j = 1, ..., n$; $\epsilon_j \sim f(\cdot)$

•
$$Y_j = 1$$
 if $Z_j > 0$; otherwise 0

$$\Pr(Y_j = 1) = 1 - F(-x_j^T \gamma / \sigma) = 1 - F(-x_j^T \beta) = F(x_j^T \beta), \text{ if } \dots$$

► examples (Table 10.7)
logistic
$$F(u) = e^{u}/(1 + e^{u})$$
 logit $log\{p/(1 - p)\} = x^{T}\beta$
normal $F(u) = \Phi(u)$ probit $\Phi^{-1}(p) = x^{T}\beta$
log-Weibull $F(u) = 1 - \exp(-e^{u})$ log-log $-\log\{-\log(p)\} = x^{T}\beta$
Gumbel $F(u) = \exp\{-e^{-u}\}$ c-log-log $\log\{-\log(1 - p)\} = x^{T}\beta$

Example 10.17 considers how much information is lost in going from Z to Y

▶ in special case where
$$x_j = -1, -0.9, ..., 0.9, 1, z_j = 0.5 + 2x_j + \epsilon_j, \epsilon_j \sim N(0, 1)$$

 $y_j = 1(z_j > 0)$

►
$$x_j = -1, -0.9, \dots, 0.9, 1,$$

 $z_j = 0.5 + 2x_j + \epsilon_j, \quad \epsilon_j \sim N(0, 1), \quad y_j = 1(z_j > 0)$

• $\hat{\beta}_Z$ is least squares estimator from original data

►
$$\operatorname{cov}(\hat{\beta}_Z) = (X^T X)^{-1} = \begin{pmatrix} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{pmatrix}^{-1}$$

► $\operatorname{var}(\hat{\beta}_{1Z}) = v_Z = 1/\sum (x_i - \bar{x})^2$

•
$$x_j = -1, -0.9, ..., 0.9, 1,$$

 $z_j = 0.5 + 2x_j + \epsilon_j, \quad \epsilon_j \sim N(0, 1), \quad y_j = 1(z_j > 0)$
• $\hat{\beta}_Z$ is least squares estimator from original data
• $\operatorname{cov}(\hat{\beta}_Z) = (X^T X)^{-1} = \left(\begin{array}{cc} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{array}\right)^{-1}$
• $\operatorname{var}(\hat{\beta}_{1Z}) = v_Z = 1/\sum (x_i - \bar{x})^2$

▶
$$\hat{\beta}_Y$$
 is the estimator from dichotomized data
► $\operatorname{cov}(\hat{\beta}_Y) \doteq (X^T W X)^{-1}, \quad W = \operatorname{diag}(w_j) \text{ (p.48)}$
► $w_j = \frac{\phi^2(\beta_0 + \beta_1 x_j)}{\Phi(-\beta_0 - \beta_1 x_j)\Phi(\beta_0 + \beta_1 x_j)}$
► $\operatorname{cov}(\hat{\beta}_Y) \doteq \left(\sum_{\substack{\sum W_j \\ \sum W_j x_j \\ \sum W_j x_j^2 \\ \sum W_j x_j^2 \\ var(\hat{\beta}_{1Y}) = v_Y = (X^T W X)_{(2,2)}^{-1}\right)$

)

•
$$x_j = -1, -0.9, \dots, 0.9, 1,$$

 $z_j = 0.5 + 2x_j + \epsilon_j, \quad \epsilon_j \sim N(0, 1), \quad y_j = 1(z_j > 0)$
• $\hat{\beta}_Z$ is least squares estimator from original data
• $\operatorname{cov}(\hat{\beta}_Z) = (X^T X)^{-1} = \left(\begin{array}{cc}n & \sum x_i\\\sum x_i & \sum x_i^2\end{array}\right)^{-1}$
• $\operatorname{var}(\hat{\beta}_{1Z}) = v_Z = 1/\sum(x_i - \bar{x})^2$
• $\hat{\beta}_Y$ is the estimator from dichotomized data
• $\operatorname{cov}(\hat{\beta}_Y) = (X^T W X)^{-1}, \quad W = \operatorname{diag}(w_j) \text{ (p.488)}$
• $w_j = \frac{\phi^2(\beta_0 + \beta_1 x_j)}{\Phi(-\beta_0 - \beta_1 x_j)\Phi(\beta_0 + \beta_1 x_j)}$
• $\operatorname{cov}(\hat{\beta}_Y) = \left(\sum_{W_X}^{W_X} \sum_{W_X}^{W_X}\right)^{-1}$
• $\operatorname{var}(\hat{\beta}_{1Y}) = v_Y = (X^T W X)^{-1}$

•
$$x_j = -1, -0.9, \dots, 0.9, 1,$$

 $z_j = 0.5 + 2x_j + \epsilon_j, \quad \epsilon_j \sim N(0, 1), \quad y_j = 1(z_j > 0)$
• $\hat{\beta}_Z$ is least squares estimator from original data
• $\operatorname{cov}(\hat{\beta}_Z) = (X^T X)^{-1} = \left(\begin{array}{cc} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{array}\right)^{-1}$
• $\operatorname{var}(\hat{\beta}_{1Z}) = v_Z = 1/\sum (x_i - \bar{x})^2$
• $\hat{\beta}_Y$ is the estimator from dichotomized data
• $\operatorname{cov}(\hat{\beta}_Y) = (X^T W X)^{-1}, \quad W = \operatorname{diag}(w_j) \text{ (p.488)}$
• $w_j = \frac{\phi^2(\beta_0 + \beta_1 x_j)}{\Phi(-\beta_0 - \beta_1 x_j)\Phi(\beta_0 + \beta_1 x_j)}$
• $\operatorname{cov}(\hat{\beta}_Y) = \left(\sum_{x \in W_j} \sum_{x \in W_j} w_{x_j}\right)^{-1}$

► β_Y is the estimator from dichotomized data ► $\operatorname{cov}(\hat{\beta}_Y) \doteq (X^T W X)^{-1}, \quad W = \operatorname{diag}(w_i) \text{ (p.488)}$

$$W_{j} = \frac{\phi^{2}(\beta_{0} + \beta_{1}x_{j})}{\Phi(-\beta_{0} - \beta_{1}x_{j})\Phi(\beta_{0} + \beta_{1}x_{j})}$$

$$Cov(\hat{\beta}_{Y}) \doteq \left(\sum_{W_{j}}^{W_{j}} \sum_{W_{j}}^{W_{j}}x_{j}\right)^{-1}$$

$$Var(\hat{\beta}_{1Y}) = V_{Y} = (X^{T}WX)^{-1}_{(2,2)}$$

•
$$x_j = -1, -0.9, \dots, 0.9, 1,$$

 $z_j = 0.5 + 2x_j + \epsilon_j, \quad \epsilon_j \sim N(0, 1), \quad y_j = 1(z_j > 0)$
• $\hat{\beta}_Z$ is least squares estimator from original data
• $\operatorname{cov}(\hat{\beta}_Z) = (X^T X)^{-1} = \left(\begin{array}{cc} n & \sum x_j \\ \sum x_i & \sum x_i^2 \end{array}\right)^{-1}$
• $\operatorname{var}(\hat{\beta}_{1Z}) = v_Z = 1/\sum (x_i - \bar{x})^2$
• $\hat{\beta}_Y$ is the estimator from dichotomized data
• $\operatorname{cov}(\hat{\beta}_Y) \doteq (X^T W X)^{-1}, \quad W = \operatorname{diag}(w_j) \text{ (p.488)}$
• $w_j = \frac{\phi^2(\beta_0 + \beta_1 x_j)}{\Phi(-\beta_0 - \beta_1 x_j)\Phi(\beta_0 + \beta_1 x_j)}$
• $\operatorname{cov}(\hat{\beta}_Y) = \left(\sum_{W_j} \sum_{W_j X_j} w_j X_j^2\right)^{-1}$

•
$$x_j = -1, -0.9, \dots, 0.9, 1,$$

 $z_j = 0.5 + 2x_j + \epsilon_j, \quad \epsilon_j \sim N(0, 1), \quad y_j = 1(z_j > 0)$
• $\hat{\beta}_Z$ is least squares estimator from original data
• $\operatorname{cov}(\hat{\beta}_Z) = (X^T X)^{-1} = \left(\begin{array}{cc} n & \sum x_i \\ \sum x_i & \sum x_i^2 \end{array}\right)^{-1}$
• $\operatorname{var}(\hat{\beta}_{1Z}) = v_Z = 1/\sum (x_i - \bar{x})^2$
• $\hat{\beta}_Y$ is the estimator from dichotomized data
• $\operatorname{cov}(\hat{\beta}_Y) \doteq (X^T W X)^{-1}, \quad W = \operatorname{diag}(w_j) \text{ (p.488)}$
• $w_j = \frac{\phi^2(\beta_0 + \beta_1 x_j)}{\Phi(-\beta_0 - \beta_1 x_j)\Phi(\beta_0 + \beta_1 x_j)}$
• $\operatorname{cov}(\hat{\beta}_Y) \doteq \left(\sum_{i=1}^{N} w_i \sum_{j=1}^{N} w_j x_j^2\right)^{-1}$

•
$$x_j = -1, -0.9, \dots, 0.9, 1,$$

 $z_j = 0.5 + 2x_j + \epsilon_j, \quad \epsilon_j \sim N(0, 1), \quad y_j = 1(z_j > 0$
• $\hat{\beta}_Z$ is least squares estimator from original data
• $\operatorname{cov}(\hat{\beta}_Z) = (X^T X)^{-1} = \left(\begin{array}{c}n & \sum x_i \\ \sum x_i & \sum x_i^2\end{array}\right)^{-1}$
• $\operatorname{var}(\hat{\beta}_{1Z}) = v_Z = 1/\sum(x_i - \bar{x})^2$
• $\hat{\beta}_Y$ is the estimator from dichotomized data
• $\operatorname{cov}(\hat{\beta}_Y) \doteq (X^T W X)^{-1}, \quad W = \operatorname{diag}(w_j) \text{ (p.488)}$
• $w_j = \frac{\phi^2(\beta_0 + \beta_1 x_j)}{\Phi(-\beta_0 - \beta_1 x_j)\Phi(\beta_0 + \beta_1 x_j)}$
• $\operatorname{cov}(\hat{\beta}_Y) \doteq \left(\sum_{w_j} w_j \sum_{w_j x_j} w_j x_j^2\right)^{-1}$
• $\operatorname{var}(\hat{\beta}_{1Y}) = v_Y = (X^T W X)_{(2,2)}^{-1}$

- ► Figure 10.6 (right) plots $\beta_1 / \sqrt{\sum (x_j \bar{x})^2} = \beta_1 / v_Z$ on the *x*-axis, and β_1 / v_Y on the *y*-axis
- trying to compare v_Z and v_Y, as well as indicate behaviour of β_{1Y}/√v_Y as β₁ → ∞

Figure 10.6 Efficiency loss due to reducing continuous variables to binary ones. Left panel: simulated data, Blobs above the dotted line are counted as successes with zeros below it as failures: the solid line is 0.5 + 2x. Right panel: Comparison of asymptotic t statistics when continuous data are dichotomized, for normal error distribution, when $\beta_0 = 0.5, 1, 1.5$ (solid, dots, dashes).

х

489

- Figure 10.6 (right) plots $\beta_1/\sqrt{\sum(x_j \bar{x})^2} = \beta_1/v_Z$ on the *x*-axis, and β_1/v_Y on the *y*-axis
- trying to compare v_Z and v_Y, as well as indicate behaviour of β_{1Y}/√v_Y as β₁ → ∞

10.4 · Proportion Data

Figure 10.6 Efficiency loss due to reducing continuous variables to binary ones. Left panel: simulated data, Blobs above the dotted line are counted as successes with zeros below it as failures: N the solid line is 0.5 + 2x. Right panel: Comparison of asymptotic t statistics when continuous data are dichotomized, for normal error distribution, when $\beta_0 = 0.5, 1, 1.5$ (solid, dots, dashes).

489

Binomial regression example

log(dose) -0.86 -0.30 -0.05 0.73	deaths 0 1 3 5	sample size 5 5 5 5 5	$y_j \sim Bin(\xi)$	5 , π _j),	$\log\{\pi_j/(1-\pi_j)\} = \beta_0 + \beta_1 x_j$	j
<pre>> bioassay</pre>	c) L 3 jlm(cbind	l(r,n-r)~x,	data = bioas	say, fami	ily = binomial))	
Call: glm(formula	a = cbinc	l(r, n - r)	~ x, family	= binomia	al, data = bioassay)	
Deviance Re 1 -0.17236	esiduals: 2 0.08133	3 -0.05869	4 0.12237			
Coefficient (Intercept) x	Estimat 0.846 7.748	e Std. Erro 6 1.019 8 4.872	or z value Pr 1 0.831 28 1.590	(> z) 0.406 0.112		
(Dispersion	n paramet	er for bino	omial family	taken to	be 1)	
Null de Residual de AIC: 7.9648	eviance: eviance: }	15.791412 0.054742	on 3 degree on 2 degree	s of free s of free	edom edom	

Number of Fisher Scoring iterations: 7

§10.4.2

- ▶ special case: n = 1 (binary regression)
- covariate takes values 0, 1

►
$$\Pr(Y_j = 1 \mid x_j = 0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)} = \pi_0$$

► $\Pr(Y_j = 1 \mid x_j = 1) = \frac{\exp(\beta_0 + \beta_1)}{1 + \exp(\beta_0 + \beta_1)} = \pi_1$

• in text:
$$\psi \leftarrow \beta_1, \lambda \leftarrow \beta_0, T \leftarrow x$$

- Y = 1 is the event of interest death, cure, heart attack, ...
- x = 1 is the factor of interest treatment, smoking status, exposure, ... (Davison calls these 'cases')
- it is more usual to call the units with Y = 1 the cases (dead, sick, recovered, ...), and Y = 0 the controls (alive, well, not recovered ...)

§10.4.2

- ▶ special case: n = 1 (binary regression)
- covariate takes values 0, 1

►
$$\Pr(Y_j = 1 \mid x_j = 0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)} = \pi_0$$

► $\Pr(Y_j = 1 \mid x_j = 1) = \frac{\exp(\beta_0 + \beta_1)}{1 + \exp(\beta_0 + \beta_1)} = \pi_1$

• in text:
$$\psi \leftarrow \beta_1, \lambda \leftarrow \beta_0, T \leftarrow x$$

- Y = 1 is the event of interest death, cure, heart attack, ...
- x = 1 is the factor of interest treatment, smoking status, exposure, ... (Davison calls these 'cases')
- it is more usual to call the units with Y = 1 the cases (dead, sick, recovered, ...), and Y = 0 the controls (alive, well, not recovered ...)

§10.4.2

- ▶ special case: n = 1 (binary regression)
- covariate takes values 0, 1

•
$$\Pr(Y_j = 1 \mid x_j = 0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)} = \pi_0$$

• $\Pr(Y_j = 1 \mid x_j = 1) = \frac{\exp(\beta_0 + \beta_1)}{1 + \exp(\beta_0 + \beta_1)} = \pi$

- in text: $\psi \leftarrow \beta_1, \lambda \leftarrow \beta_0, T \leftarrow x$
- Y = 1 is the event of interest death, cure, heart attack, ...
- x = 1 is the factor of interest treatment, smoking status, exposure, ... (Davison calls these 'cases')
- it is more usual to call the units with Y = 1 the cases (dead, sick, recovered, ...), and Y = 0 the controls (alive, well, not recovered ...)

§10.4.2

- ▶ special case: n = 1 (binary regression)
- covariate takes values 0, 1

•
$$\Pr(Y_j = 1 \mid x_j = 0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)} = \pi_0$$

• $\Pr(Y_j = 1 \mid x_j = 1) = \frac{\exp(\beta_0 + \beta_1)}{1 + \exp(\beta_0 + \beta_1)} = \pi_1$

• in text: $\psi \leftarrow \beta_1, \lambda \leftarrow \beta_0, T \leftarrow x$

- Y = 1 is the event of interest death, cure, heart attack, ...
- x = 1 is the factor of interest treatment, smoking status, exposure, ... (Davison calls these 'cases')
- it is more usual to call the units with Y = 1 the cases (dead, sick, recovered, ...), and Y = 0 the controls (alive, well, not recovered ...)

 $\S{10.4.2}$

- ▶ special case: n = 1 (binary regression)
- covariate takes values 0, 1

►
$$\Pr(Y_j = 1 \mid x_j = 0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)} = \pi_0$$

► $\Pr(Y_j = 1 \mid x_j = 1) = \frac{\exp(\beta_0 + \beta_1)}{1 + \exp(\beta_0 + \beta_1)} = \pi_1$

• in text:
$$\psi \leftarrow \beta_1, \lambda \leftarrow \beta_0, T \leftarrow x$$

- Y = 1 is the event of interest death, cure, heart attack, ...
- ► x = 1 is the factor of interest treatment, smoking status, exposure, ... (Davison calls these 'cases')
- it is more usual to call the units with Y = 1 the cases (dead, sick, recovered, ...), and Y = 0 the controls (alive, well, not recovered ...)

§10.4.2

- ▶ special case: n = 1 (binary regression)
- covariate takes values 0, 1

►
$$\Pr(Y_j = 1 \mid x_j = 0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)} = \pi_0$$

► $\Pr(Y_j = 1 \mid x_j = 1) = \frac{\exp(\beta_0 + \beta_1)}{1 + \exp(\beta_0 + \beta_1)} = \pi_1$

• in text:
$$\psi \leftarrow \beta_1, \lambda \leftarrow \beta_0, T \leftarrow x$$

• Y = 1 is the event of interest – death, cure, heart attack, ...

- x = 1 is the factor of interest treatment, smoking status, exposure, ... (Davison calls these 'cases')
- it is more usual to call the units with Y = 1 the cases (dead, sick, recovered, ...), and Y = 0 the controls (alive, well, not recovered ...)

 $\S{10.4.2}$

- ▶ special case: n = 1 (binary regression)
- covariate takes values 0, 1

►
$$\Pr(Y_j = 1 \mid x_j = 0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)} = \pi_0$$

► $\Pr(Y_j = 1 \mid x_j = 1) = \frac{\exp(\beta_0 + \beta_1)}{1 + \exp(\beta_0 + \beta_1)} = \pi_1$

• in text:
$$\psi \leftarrow \beta_1, \lambda \leftarrow \beta_0, T \leftarrow x$$

- Y = 1 is the event of interest death, cure, heart attack, ...
- x = 1 is the factor of interest treatment, smoking status, exposure, ... (Davison calls these 'cases')
- it is more usual to call the units with Y = 1 the cases (dead, sick, recovered, ...), and Y = 0 the controls (alive, well, not recovered ...)
2×2 table

§10.4.2

- ▶ special case: n = 1 (binary regression)
- covariate takes values 0, 1

►
$$\Pr(Y_j = 1 \mid x_j = 0) = \frac{\exp(\beta_0)}{1 + \exp(\beta_0)} = \pi_0$$

► $\Pr(Y_j = 1 \mid x_j = 1) = \frac{\exp(\beta_0 + \beta_1)}{1 + \exp(\beta_0 + \beta_1)} = \pi_1$

• in text:
$$\psi \leftarrow \beta_1, \lambda \leftarrow \beta_0, T \leftarrow x$$

- Y = 1 is the event of interest death, cure, heart attack, ...
- x = 1 is the factor of interest treatment, smoking status, exposure, ... (Davison calls these 'cases')
- it is more usual to call the units with Y = 1 the cases (dead, sick, recovered, ...), and Y = 0 the controls (alive, well, not recovered ...)

Prospective and retrospective sampling C &D §3.6

Table 3.6 Distribution of a binary explanatory variable, z, and response variable, y, in (a) population study, (b) prospective or cohort study, (c) retrospective or case-control study (a) Population

	y = 0	y = 1
z = 0	π00	π_{01}
z = 1	π_{10}	π_{11}

(b) Prospective study

	y = 0	y = 1
$egin{array}{c} z=0 \ z=1 \end{array}$	$\begin{array}{l} \pi_{00}/(\pi_{00}+\pi_{01}) \\ \pi_{10}/(\pi_{10}+\pi_{11}) \end{array}$	$\begin{array}{l} \pi_{01}/(\pi_{00}+\pi_{01}) \\ \pi_{11}/(\pi_{10}+\pi_{11}) \end{array}$

(c) Retrospective study

	y = 0	y = 1
$egin{array}{c} z=0 \ z=1 \end{array}$	$\frac{\pi_{00}}{(\pi_{00} + \pi_{10})} = \frac{\pi_{10}}{(\pi_{00} + \pi_{10})}$	$\frac{\pi_{01}/(\pi_{01}+\pi_{11})}{\pi_{11}/(\pi_{01}+\pi_{11})}$

 $\pi_{js} = \Pr(z = i, y = s), z \text{ explanatory}, y \text{ response}$

... prospective and retrospective

Population				
	<i>y</i> = 0	<i>y</i> = 1		
<i>x</i> = 0	π_{00}	π_{01}		
<i>x</i> = 1	π_{10}	π 11		

 Prospective study

 y = 0 y = 1

 x = 0 $\pi_{00}/(\pi_{00} + \pi_{01})$ $\pi_{01}/(\pi_{00} + \pi_{01})$

 x = 1 $\pi_{10}/(\pi_{10} + \pi_{11})$ $\pi_{11}/(\pi_{10} + \pi_{11})$

 Retrospective study

 y = 0 y = 1

 x = 0 $\pi_{00}/(\pi_{00} + \pi_{10})$ $\pi_{01}/(\pi_{01} + \pi_{11})$

 x = 1 $\pi_{10}/(\pi_{00} + \pi_{10})$ $\pi_{11}/(\pi_{01} + \pi_{11})$

odds ratio in 2nd and 3rd table the same

be assembled more easily and cheaply than a prospective study, though the lack of randomization weakens subsequent inferences. Let Z = 1 indicate that an individual is chosen for the retrospective study, and suppose that this occurs with probabilities

$$Pr(Z = 1 | Y = 1) = p_1$$
, $Pr(Z = 1 | Y = 0) = p_0$,

independent of treatment status *T*. Then the success probability for an individual who was treated, conditional on their being chosen for inclusion in the study is Pr(Y = 1 | Z = 1, T = 1). This equals

$$\frac{\Pr(Z = 1 \mid Y = 1)\Pr(Y = 1 \mid T = 1)}{\Pr(Z = 1 \mid Y = 1)\Pr(Y = 1 \mid T = 1) + \Pr(Z = 1 \mid Y = 0)\Pr(Y = 0 \mid T = 1)}$$

by Bayes' theorem, so

$$\Pr(Y = 1 \mid Z = 1, T = 1) = \frac{p_1 e^{\lambda + \psi}}{p_1 e^{\lambda + \psi} + p_0} = \frac{e^{\lambda' + \psi}}{1 + e^{\lambda' + \psi}},$$

where $\lambda' = \lambda + \log(p_1/p_0)$. A similar argument gives

$$\Pr(Y = 1 \mid Z = 1, T = 0) = \frac{e^{\lambda'}}{1 + e^{\lambda'}}$$

so although retrospective sampling alters λ , the difference of log odds ψ is unchanged. This gives a strong motivation for using ψ to summarize the treatment effect, particularly if estimates from both types of study will ultimately be combined.

This argument applies also if ψ is replaced by $x^{\mathsf{T}}\beta$, where x contains covariates as well as an indicator of treatment status. The key point is that the selection probabilities p_1 and p_0 must be independent of x.

Contingency Tables

Example 10.19

6 · Stochastic Models

Age (years)	Smokers	Non-smokers
Overall	139/582 (24)	230/732 (31)
18-24	2/55 (4)	1/62 (2)
25-34	3/124 (2)	5/157 (3)
35-44	14/109 (13)	7/121 (6)
45-54	27/130 (21)	12/78 (15)
55-64	51/115 (44)	40/121 (33)
65-74	29/36 (81)	101/129 (78)
75+	13/13 (100)	64/64 (100)

 Table 6.8
 Twenty-year

 survival and smoking
 status for 1314 women

 (Appleton et al., 1996).
 The smoker and

 non-smoker columns
 contain number dead/total

 (% dead).
 """

	Smoker	Non-smoker	
dead	139 (24%)	230 (31%)	
alive	443	502	
total	582	732	1314

> summary(glm(cbind(alive,dead) ~ smoker, data = smoking, family = binomial)) Call: glm(formula = cbind(alive, dead) ~ smoker, family = binomial, data = smoking) Deviance Residuals: Min 1Q Median 3Q Max -12.173 -5.776 1.869 5.674 9.052 Coefficients. Estimate Std. Error z value Pr(>|z|) (Intercept) 0.78052 0.07962 9.803 < 2e-16 *** smoker 0.37858 0.12566 3.013 0.00259 ** Signif. codes: 0 `***' 0.001 `**' 0.01 `*' 0.05 `.' 0.1 `' 1 (Dispersion parameter for binomial family taken to be 1) Null deviance: 641.5 on 13 degrees of freedom Residual deviance: 632.3 on 12 degrees of freedom ATC: 683.29 Number of Fisher Scoring iterations: 4

	Smoker	Non-smoker	
dead	139 (24%)	230 (31%)	
alive	443	502	
total	582	732	1314

> anova(glm(cbind(alive,dead) ~ smoker, data = smoking, family = binomial))
Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind (alive, dead)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev NULL 13 641.5 smoker 1 9.2003 12 632.3 > with(smoking, xtabs(cbind(dead,alive) ~ smoker))

smoker dead alive 0 230 502 1 139 443 > summary(.Last.value) Call: xtabs(formula = cbind(dead, alive) ~ smoker) Number of cases in table: 1314 Number of factors: 2 Test for independence of all factors: Chisq = 9.121, df = 1, p-value = 0.002527

	sm	non-sm	sm	non-sm	sm	non-sm	
d	2	1	3	5	14	7	
а	53	61	121	152	95	114	• • •
	55	62	124	157	109	121	
Age	-	18-24		25-34		35-44	

> summary(glm(cbind(alive,dead) ~ smoker + factor(age), data = smoking, family = binomial))
...
Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	3.8601	0.5939	6.500	8.05e-11	* * *
smoker	-0.4274	0.1770	-2.414	0.015762	*
factor(age)25-34	-0.1201	0.6865	-0.175	0.861178	
factor (age) 35-44	-1.3411	0.6286	-2.134	0.032874	*
factor (age) 45-54	-2.1134	0.6121	-3.453	0.000555	* * *
factor (age) 55-64	-3.1808	0.6006	-5.296	1.18e-07	* * *
factor (age) 65-74	-5.0880	0.6195	-8.213	< 2e-16	* * *
factor (age) 75+	-27.8073	11293.1437	-0.002	0.998035	
Signif. codes: 0	`***' 0.00	1 '**' 0.01	`*' 0.0	05 `.' 0.1	· ' 1
(Dispersion parame	ter for bi	nomial fami	lly take	n to be 1)	
Null deviance:	641 4963	on 13 dec	TRADE OF	freedom	
Residual deviance:	2 3809	on 6 dec	rees of	freedom	
ATC: 65.377	2.0000		, 01		

Number of Fisher Scoring iterations: 20

10.5.2

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots, J$

► or

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$

 if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

▶ or

 $\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots, J$

► Oľ

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$

 if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

▶ or

 $\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots I$ or

$$y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$$

 if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

▶ or

$$\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$$

10.5.2

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots I$ • or

$$\mathbf{y}_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$$

 if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

or

$$\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$$

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots I$

or

$$\mathbf{y}_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$$

 if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

or

$$\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$$

10.5.2

- suppose we have 3 factors, each with several levels
- observe a response at each combination of factors
- linear model might be

 $y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \epsilon_{ijk}, \quad k = 1, \dots, K; j = 1, \dots, J; i = 1, \dots I$

or

$$\mathbf{y}_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk} + \epsilon_{ijk}$$

 if the y_{ijk} are positive counts, rather than continuous, then Poisson model could have

$$y_{ijk} \sim Po(\mu_{ijk}), \quad \log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k$$

or

$$\log(\mu_{ijk}) = \mu + \alpha_i + \beta_j + \gamma_k + (\alpha\beta)_{ij} + (\alpha\gamma)_{ik} + (\beta\gamma)_{jk}$$

Example 10.23

8

1 · Introduction

Years of smoking t	Daily cigarette consumption d								
	Nonsmokers	1–9	10-14	15-19	20-24	25-34	35+		
15-19	10366/1	3121	3577	4317	5683	3042	670		
20-24	8162	2937	3286/1	4214	6385/1	4050/1	1166		
25-29	5969	2288	2546/1	3185	5483/1	4290/4	1482		
30-34	4496	2015	2219/2	2560/4	4687/6	4268/9	1580/4		
35-39	3512	1648/1	1826	1893	3646/5	3529/9	1336/6		
40-44	2201	1310/2	1386/1	1334/2	2411/12	2424/11	924/10		
45-49	1421	927	988/2	849/2	1567/9	1409/10	556/7		
50-54	1121	710/3	684/4	470/2	857/7	663/5	255/4		
55-59	826/2	606	449/3	280/5	416/7	284/3	104/1		

Table 1.4 Lung cancer deaths in British male physicians (Frome, 1983). The table gives man-years at risk/number of cases of lung cancer, cross-classified by years of smoking, taken to be age minus 20 years, and number of cigarettes smoked per day.

8

1 · Introduction

Years of smoking t	Daily cigarette consumption d								
	Nonsmokers	1–9	10-14	15-19	20-24	25-34	35+		
15-19	10366/1	3121	3577	4317	5683	3042	670		
20-24	8162	2937	3286/1	4214	6385/1	4050/1	1166		
25-29	5969	2288	2546/1	3185	5483/1	4290/4	1482		
30-34	4496	2015	2219/2	2560/4	4687/6	4268/9	1580/4		
35-39	3512	1648/1	1826	1893	3646/5	3529/9	1336/6		
40-44	2201	1310/2	1386/1	1334/2	2411/12	2424/11	924/10		
45-49	1421	927	988/2	849/2	1567/9	1409/10	556/7		
50-54	1121	710/3	684/4	470/2	857/7	663/5	255/4		
55-59	826/2	606	449/3	280/5	416/7	284/3	104/1		

Table 1.4 Lung cancer deaths in British male physicians (Frome, 1983). The table gives man-years at risk/number of cases of lung cancer, cross-classified by years of smoking, taken to be age minus 20 years, and number of cigarettes smoked per day.

 $y_{td} \sim \text{Poisson}(T_{td}\mu_{td})$ $T_d = \text{man-years}$

 $\mu_{td} = \exp(\alpha_t + \beta_d)$

8

1 · Introduction

Years of smoking t	Daily cigarette consumption d								
	Nonsmokers	1–9	10-14	15-19	20–24	25-34	35+		
15-19	10366/1	3121	3577	4317	5683	3042	670		
20-24	8162	2937	3286/1	4214	6385/1	4050/1	1166		
25-29	5969	2288	2546/1	3185	5483/1	4290/4	1482		
30-34	4496	2015	2219/2	2560/4	4687/6	4268/9	1580/4		
35-39	3512	1648/1	1826	1893	3646/5	3529/9	1336/6		
40-44	2201	1310/2	1386/1	1334/2	2411/12	2424/11	924/10		
45-49	1421	927	988/2	849/2	1567/9	1409/10	556/7		
50-54	1121	710/3	684/4	470/2	857/7	663/5	255/4		
55-59	826/2	606	449/3	280/5	416/7	284/3	104/1		

Table 1.4 Lung cancer deaths in British male physicians (Frome, 1983). The table gives man-years at risk/number of cases of lung cancer, cross-classified by years of smoking, taken to be age minus 20 years, and number of cigarettes smoked per day.

$y_{td} \sim \text{Poisson}(T_{td}\mu_{td})$ $T_d = \text{man-years}$

 $\mu_{td} = \exp(\alpha_t + \beta_d)$

8

1 · Introduction

Years of smoking t	Daily cigarette consumption d								
	Nonsmokers	1–9	10-14	15-19	20-24	25-34	35+		
15-19	10366/1	3121	3577	4317	5683	3042	670		
20-24	8162	2937	3286/1	4214	6385/1	4050/1	1166		
25-29	5969	2288	2546/1	3185	5483/1	4290/4	1482		
30-34	4496	2015	2219/2	2560/4	4687/6	4268/9	1580/4		
35-39	3512	1648/1	1826	1893	3646/5	3529/9	1336/6		
40-44	2201	1310/2	1386/1	1334/2	2411/12	2424/11	924/10		
45-49	1421	927	988/2	849/2	1567/9	1409/10	556/7		
50-54	1121	710/3	684/4	470/2	857/7	663/5	255/4		
55-59	826/2	606	449/3	280/5	416/7	284/3	104/1		

Table 1.4 Lung cancer deaths in British male physicians (Frome, 1983). The table gives man-years at risk/number of cases of lung cancer, cross-classified by years of smoking, taken to be age minus 20 years, and number of cigarettes smoked per day.

$y_{td} \sim \text{Poisson}(T_{td}\mu_{td})$ $T_d = \text{man-years}$

 $\mu_{td} = \exp(\alpha_t + \beta_d)$

> summary(glm(y ~ cigarettes + years.smok + offset(log(Time)), family = poisson, data = lung.cancer)) ...

Coefficients:

	Estimate	Std. Error	z value	Pr(> z)	
(Intercept)	-12.5784	1.1475	-10.961	< 2e-16	* * *
cigarettes1-9	1.2200	0.7073	1.725	0.084547	
cigarettes10-14	2.0991	0.6363	3.299	0.000971	* * *
cigarettes15-19	2.3089	0.6327	3.649	0.000263	* * *
cigarettes20-24	2.9009	0.5956	4.870	1.11e-06	* * *
cigarettes25-34	3.1162	0.5947	5.240	1.61e-07	* * *
cigarettes35+	3.6059	0.6048	5.962	2.49e-09	* * *

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 445.099 on 62 degrees of freedom Residual deviance: 51.471 on 48 degrees of freedom AIC: 201.31

- p.501, fit a 4-parameter model
- $\flat \ \lambda(\boldsymbol{d},t) = (\beta_0 + \beta_1 \boldsymbol{d}^{\beta_2}) t^{\beta_3}$
- if $\beta_2 = 0, \beta_1$ not estimable; similarly if $\beta_1 = 0$
- reparameterize to $\lambda(d, t) = \{e^{\gamma_0} \exp(\gamma_1 + \beta_2 \log d)\} \exp(\beta_3 \log t)$
- model fits quite well, fewer estimated parameters, β₂ = 1 corresponds to linear growth
- see also Example 10.21 for a Poisson example (y is number of goals scored in soccer match)
- with the Poisson-multinomial connection, we can also fit contingency tables with more than one response factor
- Faraway: Extending the Linear Model with R; Agresti: Analysis of Categorical Data
- skip "marginal models" (p.505) and ordinal data (§10.5.2)

- p.501, fit a 4-parameter model
- $\flat \ \lambda(\boldsymbol{d},t) = (\beta_0 + \beta_1 \boldsymbol{d}^{\beta_2}) t^{\beta_3}$

• if $\beta_2 = 0, \beta_1$ not estimable; similarly if $\beta_1 = 0$

- reparameterize to $\lambda(d, t) = \{e^{\gamma_0} \exp(\gamma_1 + \beta_2 \log d)\} \exp(\beta_3 \log t)$
- model fits quite well, fewer estimated parameters, β₂ = 1 corresponds to linear growth
- see also Example 10.21 for a Poisson example (y is number of goals scored in soccer match)
- with the Poisson-multinomial connection, we can also fit contingency tables with more than one response factor
- Faraway: Extending the Linear Model with R; Agresti: Analysis of Categorical Data
- skip "marginal models" (p.505) and ordinal data (§10.5.2)

- p.501, fit a 4-parameter model
- $\flat \ \lambda(\boldsymbol{d},t) = (\beta_0 + \beta_1 \boldsymbol{d}^{\beta_2}) t^{\beta_3}$
- if $\beta_2 = 0, \beta_1$ not estimable; similarly if $\beta_1 = 0$
- reparameterize to $\lambda(d, t) = \{e^{\gamma_0} \exp(\gamma_1 + \beta_2 \log d)\} \exp(\beta_3 \log t)$
- model fits quite well, fewer estimated parameters, β₂ = 1 corresponds to linear growth
- see also Example 10.21 for a Poisson example (y is number of goals scored in soccer match)
- with the Poisson-multinomial connection, we can also fit contingency tables with more than one response factor
- Faraway: Extending the Linear Model with R; Agresti: Analysis of Categorical Data
- skip "marginal models" (p.505) and ordinal data (§10.5.2)

- p.501, fit a 4-parameter model
- $\flat \ \lambda(\boldsymbol{d},t) = (\beta_0 + \beta_1 \boldsymbol{d}^{\beta_2}) t^{\beta_3}$
- if $\beta_2 = 0, \beta_1$ not estimable; similarly if $\beta_1 = 0$
- reparameterize to $\lambda(d, t) = \{e^{\gamma_0} \exp(\gamma_1 + \beta_2 \log d)\} \exp(\beta_3 \log t)$
- model fits quite well, fewer estimated parameters, β₂ = 1 corresponds to linear growth
- see also Example 10.21 for a Poisson example (y is number of goals scored in soccer match)
- with the Poisson-multinomial connection, we can also fit contingency tables with more than one response factor
- Faraway: Extending the Linear Model with R; Agresti: Analysis of Categorical Data
- skip "marginal models" (p.505) and ordinal data (§10.5.2)

- p.501, fit a 4-parameter model
- $\flat \ \lambda(\boldsymbol{d},t) = (\beta_0 + \beta_1 \boldsymbol{d}^{\beta_2}) t^{\beta_3}$
- if $\beta_2 = 0, \beta_1$ not estimable; similarly if $\beta_1 = 0$
- reparameterize to $\lambda(d, t) = \{e^{\gamma_0} \exp(\gamma_1 + \beta_2 \log d)\} \exp(\beta_3 \log t)$
- model fits quite well, fewer estimated parameters, β₂ = 1 corresponds to linear growth
- see also Example 10.21 for a Poisson example (y is number of goals scored in soccer match)
- with the Poisson-multinomial connection, we can also fit contingency tables with more than one response factor
- Faraway: Extending the Linear Model with R; Agresti: Analysis of Categorical Data
- skip "marginal models" (p.505) and ordinal data (§10.5.2)

- p.501, fit a 4-parameter model
- $\flat \ \lambda(\boldsymbol{d},t) = (\beta_0 + \beta_1 \boldsymbol{d}^{\beta_2}) t^{\beta_3}$
- if $\beta_2 = 0, \beta_1$ not estimable; similarly if $\beta_1 = 0$
- reparameterize to $\lambda(d, t) = \{e^{\gamma_0} \exp(\gamma_1 + \beta_2 \log d)\} \exp(\beta_3 \log t)$
- model fits quite well, fewer estimated parameters, β₂ = 1 corresponds to linear growth
- see also Example 10.21 for a Poisson example (y is number of goals scored in soccer match)
- with the Poisson-multinomial connection, we can also fit contingency tables with more than one response factor
- Faraway: Extending the Linear Model with R; Agresti: Analysis of Categorical Data
- skip "marginal models" (p.505) and ordinal data (§10.5.2)

- p.501, fit a 4-parameter model
- $\flat \ \lambda(\boldsymbol{d},t) = (\beta_0 + \beta_1 \boldsymbol{d}^{\beta_2}) t^{\beta_3}$
- if $\beta_2 = 0, \beta_1$ not estimable; similarly if $\beta_1 = 0$
- reparameterize to $\lambda(d, t) = \{e^{\gamma_0} \exp(\gamma_1 + \beta_2 \log d)\} \exp(\beta_3 \log t)$
- model fits quite well, fewer estimated parameters, β₂ = 1 corresponds to linear growth
- see also Example 10.21 for a Poisson example (y is number of goals scored in soccer match)
- with the Poisson-multinomial connection, we can also fit contingency tables with more than one response factor
- Faraway: Extending the Linear Model with R; Agresti: Analysis of Categorical Data
- skip "marginal models" (p.505) and ordinal data (§10.5.2)

- p.501, fit a 4-parameter model
- $\flat \ \lambda(\boldsymbol{d},t) = (\beta_0 + \beta_1 \boldsymbol{d}^{\beta_2}) t^{\beta_3}$
- if $\beta_2 = 0, \beta_1$ not estimable; similarly if $\beta_1 = 0$
- reparameterize to $\lambda(d, t) = \{e^{\gamma_0} \exp(\gamma_1 + \beta_2 \log d)\} \exp(\beta_3 \log t)$
- model fits quite well, fewer estimated parameters, β₂ = 1 corresponds to linear growth
- see also Example 10.21 for a Poisson example (y is number of goals scored in soccer match)
- with the Poisson-multinomial connection, we can also fit contingency tables with more than one response factor
- Faraway: Extending the Linear Model with R; Agresti: Analysis of Categorical Data
- skip "marginal models" (p.505) and ordinal data (§10.5.2)

- p.501, fit a 4-parameter model
- $\flat \ \lambda(\boldsymbol{d},t) = (\beta_0 + \beta_1 \boldsymbol{d}^{\beta_2}) t^{\beta_3}$
- if $\beta_2 = 0, \beta_1$ not estimable; similarly if $\beta_1 = 0$
- reparameterize to $\lambda(d, t) = \{e^{\gamma_0} \exp(\gamma_1 + \beta_2 \log d)\} \exp(\beta_3 \log t)$
- model fits quite well, fewer estimated parameters, β₂ = 1 corresponds to linear growth
- see also Example 10.21 for a Poisson example (y is number of goals scored in soccer match)
- with the Poisson-multinomial connection, we can also fit contingency tables with more than one response factor
- Faraway: Extending the Linear Model with R; Agresti: Analysis of Categorical Data
- skip "marginal models" (p.505) and ordinal data (§10.5.2)