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I deviance and scaled deviance SM errata

I nonlinear least squares §10.2

I proportion data and contingency tables §10.4, 10.5.2

I CD on observational studies
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Deviance and scaled deviance
I yj ∼ f (yj ; ηj , φ), independently, j = 1, . . . ,n SM §10.2

I assume φ is known
I log-likelihood function `(η; y) =

∑n
j=1 log f (yj ; ηj , φ)

I η̃ = arg supη `(η; y)

I now suppose ηj = ηj(β), β ∈ Rp

I η̂ = η(β̂)

I “scaled deviance”

D = 2
∑
{log f (yj ; η̃j)− log f (yj ; η̂j)}

I example: yj ∼ N(ηj ;σ
2); η̃j = yj ; D =

∑
(yj − η̂j)

2/σ2
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... deviance and scaled deviance
I if two nested models are to be compared, A ⊂ B
I then two scaled deviances are computed
I DA = 2

∑
{log f (yj ; η̃j)− log f (yj ; η̂

A
j )}

I DB = 2
∑
{log f (yj ; η̃j)− log f (yj ; η̂

B
j )}

I difference is free of η̃

I difference is log-likelihood ratio statistic for testing model A
(within model B)

I DA − DB
.∼ χ2

pB−pA

I if φ is unknown, then must be estimated, before DA or DB
can be computed
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... deviance and scaled deviance, GLMS
I φ is either 1 (Binomial, Poisson) or unknown (Normal, Gamma,

inverse Gaussian)
I when known, D measures ’goodness of fit’

of the fitted model
I because it compares it to the saturated model `(η̃; y)

I when unknown, it appears as a scale factor in D

I thus
(DA − DB)/(pB − pA)

φ̂

.∼ FpB−pA,pB

I φ̂ estimated under the larger model, B

I φ̂ =
1

n − p

n∑
j=1

(yj − µ̂j )
2

V (µ̂j )

I if Poisson or Binomial have over dispersion, φ̂ > 1, then D no
longer measures goodness of fit

I multiply estimate of var(β̂j ) by φ̂
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Nonlinear models §10.2

I yj ∼ f (yj ; ηj , φ), independently, j = 1, . . . ,n
I ηj = ηj(β)

I β̂ can be computed by iteratively re-weighted LS
I when (i) φ is fixed and

(ii) J ← I observed Fisher info. replaced by expected Fisher info.

I

β̂ = (X TWX )−1X TWz (1)

I X = X (β̂) =
∂η(β)

∂βT

∣∣∣∣
β̂

I W = W (β̂) = diag(wj); wj = E(−∂2`j/∂η
2
j )

I z = z(β̂) = (Xβ + W−1u); uj(β̂) = ∂`j(η)/∂ηj

I form of (1) gives definitions of residuals, influence,
leverage, by analogy with linear model §8.6.1, 8.6.3, 10.2.3
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I ηj = ηj(β)

I β̂ can be computed by iteratively re-weighted LS
I when (i) φ is fixed and

(ii) J ← I observed Fisher info. replaced by expected Fisher info.
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Calcium data: Example 10.1
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... calcium data
I model

E(yj) = β0{1−exp(−xj/β1)}, yj = E(yj)+εj , εj ∼ N(0, σ2)

I fitting:

min
β0,β1

n∑
j=1

(yj − ηj)
2

I use nls or nlm; requires starting values
I > library(SMPracticals); data(calcium)

> fit = nls(cal ˜ b0*(1-exp(-time/b1)), data = calcium, start = list(b0=5,b1=5))
> summary(fit)
Formula: cal ˜ b0 * (1 - exp(-time/b1))

Parameters:
Estimate Std. Error t value Pr(>|t|)

b0 4.3094 0.3029 14.226 1.73e-13 ***
b1 4.7967 0.9047 5.302 1.71e-05 ***
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

Residual standard error: 0.5464 on 25 degrees of freedom

Number of iterations to convergence: 3
Achieved convergence tolerance: 9.55e-07
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... calcium data
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... calcium data
I there are 3 observations at each time point
I can fit a model with a different parameter for each time:

E(yj) = ηj + εj
I the nonlinear model is nested within this; constrains ηj as

above
I anova(lm(cal ˜ factor(time), data = calcium))
I Analysis of Variance Table

Response: cal
Df Sum Sq Mean Sq F value Pr(>F)

factor(time) 8 48.437 6.0546 22.720 6.688e-08 ***
Residuals 18 4.797 0.2665

I > deviance(fit) # 7.464514 (mistake in Davison)
> sum(residuals(fit)ˆ2) # 7.464514
> (7.464514 - 4.797)/(25 - 18) # 0.3811
> .3811/.2665
[1] 1.429919 ## Davison has 1.53
> pf(1.430,7,18, lower=F)
[1] 0.2538313
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... calcium data
I checking constant variance assumption
I estimates of σ2 at each time, each with 2 degrees of

freedom
I > s2 = tapply(calcium$cal, factor(calcium$time), var)

> s2
> s2

0.45 1.3 2.4 4 6.1 8.05
0.17367258 0.34616902 0.09523507 0.09422579 0.06686923 0.19656739

11.15 13.15 15
1.08876166 0.19415027 0.14279290
> plot(sort(s2),qchisq((1:9)/10,2))

0.2 0.4 0.6 0.8 1.0

1
2

3
4

sort(s2)

qc
hi

sq
((

1:
9)

/1
0,

 2
)
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Example Factmonster
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http://www.factmonster.com/ipka/A0758121.html


Nonlinear model
I E(yj) = β0 + β1 exp(−β2xj) “Analysis of running times in Olympic

games”

I winning times are decreasing; rate of improvement is
decreasing; limiting time (β0)
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Dichotomizing continuous data (§10.4.1)
I suppose Zj = xT

j γ + σεj , j = 1, . . . ,n; εj ∼ f (·)
I Yj = 1 if Zj > 0; otherwise 0
I

Pr(Yj = 1) = 1−F (−xT
j γ/σ) = 1−F (−xT

j β) = F (xT
j β), if ...

I examples (Table 10.7)
logistic F (u) = eu/(1 + eu) logit log{p/(1− p)} = xTβ

normal F (u) = Φ(u) probit Φ−1(p) = xTβ

log-Weibull F (u) = 1− exp(−eu) log-log − log{− log(p)} = xTβ

Gumbel F (u) = exp{−e−u} c-log-log log{− log(1− p)} = xTβ

I Example 10.17 considers how much information is lost in
going from Z to Y

I in special case where xj = −1,−0.9, . . . ,0.9,1,
zj = 0.5 + 2xj + εj , εj ∼ N(0,1)
yj = 1(zj > 0)
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... example 10.17
I xj = −1,−0.9, . . . ,0.9,1,

zj = 0.5 + 2xj + εj , εj ∼ N(0,1), yj = 1(zj > 0)

I β̂Z is least squares estimator from original data

I cov(β̂Z ) = (X T X )−1 =

(
n

∑
xi∑

xi
∑

x2
i

)−1

I var(β̂1Z ) = vZ = 1/
∑

(xi − x̄)2

I β̂Y is the estimator from dichotomized data
I cov(β̂Y )

.
= (X T WX )−1, W = diag(wj) (p.488)

I wj =
φ2(β0 + β1xj)

Φ(−β0 − β1xj)Φ(β0 + β1xj)

I cov(β̂Y )
.

=

( ∑
wj

∑
wjxj∑

wjxj
∑

wjx2
j

)−1

I var(β̂1Y ) = vY = (X T WX )−1
(2,2)
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... example 10.17
I Figure 10.6 (right) plots β1/

√∑
(xj − x̄)2 = β1/vZ on the

x-axis, and β1/vY on the y -axis
I trying to compare vZ and vY , as well as indicate behaviour

of β1Y/
√

vY as β1 →∞
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Binomial regression example
log(dose) deaths sample size

-0.86 0 5
-0.30 1 5
-0.05 3 5
0.73 5 5

yj ∼ Bin(5, πj ), log{πj/(1−πj )} = β0 +β1xj

> bioassay
x n r

1 -0.86 5 0
2 -0.30 5 1
3 -0.05 5 3
4 0.73 5 5
> summary(glm(cbind(r,n-r)˜x, data = bioassay, family = binomial))

Call:
glm(formula = cbind(r, n - r) ˜ x, family = binomial, data = bioassay)

Deviance Residuals:
1 2 3 4

-0.17236 0.08133 -0.05869 0.12237

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.8466 1.0191 0.831 0.406
x 7.7488 4.8728 1.590 0.112

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.791412 on 3 degrees of freedom
Residual deviance: 0.054742 on 2 degrees of freedom
AIC: 7.9648

Number of Fisher Scoring iterations: 7
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2× 2 table §10.4.2

I special case: n = 1 (binary regression)
I covariate takes values 0, 1

I Pr(Yj = 1 | xj = 0) =
exp(β0)

1 + exp(β0)
= π0

I Pr(Yj = 1 | xj = 1) =
exp(β0 + β1)

1 + exp(β0 + β1)
= π1

I in text: ψ ← β1, λ← β0,T ← x

I Y = 1 is the event of interest – death, cure, heart attack, ...
I x = 1 is the factor of interest – treatment, smoking status,

exposure, ... (Davison calls these ’cases’)
I it is more usual to call the units with Y = 1 the cases

(dead, sick, recovered, ...), and Y = 0 the controls (alive,
well, not recovered ...)
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2× 2 table §10.4.2
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Prospective and retrospective sampling C &D §3.6

πjs = Pr(z = i , y = s), z explanatory, y response
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... prospective and retrospective
Population

y = 0 y = 1
x = 0 π00 π01
x = 1 π10 π11

Prospective study
y = 0 y = 1

x = 0 π00/(π00 + π01) π01/(π00 + π01)
x = 1 π10/(π10 + π11) π11/(π10 + π11)

Retrospective study
y = 0 y = 1

x = 0 π00/(π00 + π10) π01/(π01 + π11)
x = 1 π10/(π00 + π10) π11/(π01 + π11)

odds ratio in 2nd and 3rd table the same
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Contingency Tables Example 10.19

Smoker Non-smoker
dead 139 (24%) 230 (31%)
alive 443 502
total 582 732 1314
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... Example 10.19

> summary(glm(cbind(alive,dead) ˜ smoker, data = smoking, family = binomial))
Call:
glm(formula = cbind(alive, dead) ˜ smoker, family = binomial,

data = smoking)

Deviance Residuals:
Min 1Q Median 3Q Max

-12.173 -5.776 1.869 5.674 9.052

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 0.78052 0.07962 9.803 < 2e-16 ***
smoker 0.37858 0.12566 3.013 0.00259 **
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 641.5 on 13 degrees of freedom
Residual deviance: 632.3 on 12 degrees of freedom
AIC: 683.29

Number of Fisher Scoring iterations: 4
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... example 10.19
Smoker Non-smoker

dead 139 (24%) 230 (31%)
alive 443 502
total 582 732 1314

> anova(glm(cbind(alive,dead) ˜ smoker, data = smoking, family = binomial))
Analysis of Deviance Table

Model: binomial, link: logit

Response: cbind(alive, dead)

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev
NULL 13 641.5
smoker 1 9.2003 12 632.3
> with(smoking, xtabs(cbind(dead,alive) ˜ smoker))

smoker dead alive
0 230 502
1 139 443

> summary(.Last.value)
Call: xtabs(formula = cbind(dead, alive) ˜ smoker)
Number of cases in table: 1314
Number of factors: 2
Test for independence of all factors:
Chisq = 9.121, df = 1, p-value = 0.002527
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... Example 10.19
sm non-sm sm non-sm sm non-sm

d 2 1 3 5 14 7
a 53 61 121 152 95 114 · · ·

55 62 124 157 109 121
Age 18-24 25-34 35-44 · · ·

> summary(glm(cbind(alive,dead) ˜ smoker + factor(age), data = smoking, family = binomial))
...
Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 3.8601 0.5939 6.500 8.05e-11 ***
smoker -0.4274 0.1770 -2.414 0.015762 *
factor(age)25-34 -0.1201 0.6865 -0.175 0.861178
factor(age)35-44 -1.3411 0.6286 -2.134 0.032874 *
factor(age)45-54 -2.1134 0.6121 -3.453 0.000555 ***
factor(age)55-64 -3.1808 0.6006 -5.296 1.18e-07 ***
factor(age)65-74 -5.0880 0.6195 -8.213 < 2e-16 ***
factor(age)75+ -27.8073 11293.1437 -0.002 0.998035
---
Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 641.4963 on 13 degrees of freedom
Residual deviance: 2.3809 on 6 degrees of freedom
AIC: 65.377

Number of Fisher Scoring iterations: 20
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Log-linear models 10.5.2

I suppose we have 3 factors, each with several levels
I observe a response at each combination of factors
I linear model might be

yijk = µ+αi+βj+γk +εijk , k = 1, . . . ,K ; j = 1, . . . , J; i = 1, . . . I

I or

yijk = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk + εijk

I if the yijk are positive counts, rather than continuous, then
Poisson model could have

yijk ∼ Po(µijk ), log(µijk ) = µ+ αi + βj + γk

I or

log(µijk ) = µ+ αi + βj + γk + (αβ)ij + (αγ)ik + (βγ)jk
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Example 10.23

> data(lung.cancer)
> lung.cancer[1:3,]

years.smok cigarettes Time y
1 15-19 0 10366 1
2 15-19 1-9 3121 0
3 15-19 10-14 3577 0
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... example 10.23

ytd ∼ Poisson(Ttdµtd ) Td = man-years

µtd = exp(αt + βd )
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... Example 10.23

> summary(glm(y ˜ cigarettes + years.smok + offset(log(Time)),
family = poisson, data = lung.cancer))
...

Coefficients:
Estimate Std. Error z value Pr(>|z|)

(Intercept) -12.5784 1.1475 -10.961 < 2e-16 ***
cigarettes1-9 1.2200 0.7073 1.725 0.084547 .
cigarettes10-14 2.0991 0.6363 3.299 0.000971 ***
cigarettes15-19 2.3089 0.6327 3.649 0.000263 ***
cigarettes20-24 2.9009 0.5956 4.870 1.11e-06 ***
cigarettes25-34 3.1162 0.5947 5.240 1.61e-07 ***
cigarettes35+ 3.6059 0.6048 5.962 2.49e-09 ***
...

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 445.099 on 62 degrees of freedom
Residual deviance: 51.471 on 48 degrees of freedom
AIC: 201.31

Number of Fisher Scoring iterations: 6
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... log-linear models
I p.501, fit a 4-parameter model
I λ(d , t) = (β0 + β1dβ2 )tβ3

I if β2 = 0, β1 not estimable; similarly if β1 = 0
I reparameterize to λ(d , t) = {eγ0 exp(γ1 + β2 log d)}exp(β3 log t)

I model fits quite well, fewer estimated parameters, β2 = 1
corresponds to linear growth

I see also Example 10.21 for a Poisson example (y is number of
goals scored in soccer match)

I with the Poisson-multinomial connection, we can also fit
contingency tables with more than one response factor

I Faraway: Extending the Linear Model with R; Agresti: Analysis of
Categorical Data

I skip ”marginal models” (p.505) and ordinal data (§10.5.2)
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