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deviance and scaled deviance SM errata
nonlinear least squares §10.2
proportion data and contingency tables §10.4, 10.5.2

CD on observational studies
HW 2 due February 28
You should read: §10.1, 10.2 (excl. Ex. 10.7), 10.3, 10.4,

10.5.2 (excl. Ex.10.22, p.505-511), 10.6
by end of reading week
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> ¥ ~ f(y;imj, ¢), independently, j =1,...,n

> assume ¢ is known
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Deviance and scaled deviance

> ¥ ~ f(y;imj, ¢), independently, j =1,...,n SM §10.2
> assume ¢ is known

> log-likelihood function £(1; y) = >~ log f(y;; mj, )

>

ij = argsup, £(n; ¥)

» now suppose 7; = n;(3), 5 € RP
7 = n(B)

v
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Deviance and scaled deviance

> ¥ ~ f(y;imj, ¢), independently, j =1,...,n

> assume ¢ is known

> log-likelihood function £(n; y) = >~iL; log f(y;; 7j, ¢)
>

fj = argsup,, £(n; ¥)

> now suppose 7; = 7;(3), 8 € RP

il =n(B)

“scaled deviance”

D =2 {log f(y;; ij) — log f(y;; )}

v

v
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Deviance and scaled deviance

> ¥ ~ f(y;imj, ¢), independently, j =1,...,n SM §10.2
> assume ¢ is known

> log-likelihood function £(n; y) = >~iL; log f(y;; 7j, ¢)

>

fj = argsup,, £(n; ¥)

> now suppose 7; = 7;(3), 8 € RP

A

> 7 =n(B)
» “scaled deviance”
D =2 {log f(y;: ;) — log f(y;: 7;)}
» example: y; ~ N(nj; 0?); @j=y; D=>(y;—7)?/o?
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... deviance and scaled deviance

» if two nested models are to be compared, AC B
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... deviance and scaled deviance

» if two nested models are to be compared, AC B
» then two scaled deviances are computed

> Da =23 {log f(y;; 7jy) — log f(y;; 1)}
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... deviance and scaled deviance

if two nested models are to be compared, A C B
then two scaled deviances are computed

Da = 23" {log f(y;: if;) — log f(y;: Af")}
Dp = 23 {log f(y;; fiy) — log f(y;: )}

v

v

v

v
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... deviance and scaled deviance

if two nested models are to be compared, A C B
then two scaled deviances are computed

Da = 25>{log f(y;: i) — log f(y;: i)}

Dg = 2 {log f(y;; ijj) — log f(y;: 77)}
difference is free of 7j

v

v

v

v

v

STA 2201: Applied Statistics I February 7, 2014



... deviance and scaled deviance

if two nested models are to be compared, A C B

v

v

then two scaled deviances are computed
Dy = 2 {log f(y;: ;) — log f(y;: )}

Dg = 2 {log f(y;; ijj) — log f(y;: 77)}
difference is free of 7j

v

v

v

v

difference is log-likelihood ratio statistic for testing model A
(within model B)
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... deviance and scaled deviance

if two nested models are to be compared, A C B
then two scaled deviances are computed

Da = 25>{log f(y;: i) — log f(y;: i)}

Dg = 2 {log f(y;; ijj) — log f(y;: 77)}
difference is free of 7j

v

v

v

v

v

v

difference is log-likelihood ratio statistic for testing model A
(within model B)

L2
> Da = Dg ~ Xpg—p,
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... deviance and scaled deviance
» if two nested models are to be compared, AC B
» then two scaled deviances are computed
> Da =2 {log (y;: ;) — log F(y;: 1)}
> Dp =23 {log f(y;; ;) — log f(y;: A7)}
» difference is free of 7j

» difference is log-likelihood ratio statistic for testing model A
(within model B)

> Da—Dg~ X%B_pA
» if ¢ is unknown, then must be estimated, before D4 or Dg
can be computed
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... deviance and scaled deviance, GLMS

> ¢ is either 1 (Binomial, Poisson) or unknown (Normal, Gamma,
inverse Gaussian)
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» when known, D measures ‘goodness of fit’
of the fitted model
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» because it compares it to the saturated model ¢(7}; y)
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» ¢ is either 1 (Binomial, Poisson) or unknown (Normal, Gamma,
inverse Gaussian)

» when known, D measures ‘goodness of fit’
of the fitted model

» because it compares it to the saturated model ¢(7}; y)
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... deviance and scaled deviance, GLMS
» ¢ is either 1 (Binomial, Poisson) or unknown (Normal, Gamma,
inverse Gaussian)

» when known, D measures ‘goodness of fit’
of the fitted model
» because it compares it to the saturated model ¢(7}; y)

» when unknown, it appears as a scale factor in D

> thus (PA—Ds)/(Ps —Pa) Fon oros

¢
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... deviance and scaled deviance, GLMS

» ¢ is either 1 (Binomial, Poisson) or unknown (Normal, Gamma,
inverse Gaussian)

» when known, D measures ‘goodness of fit’
of the fitted model

» because it compares it to the saturated model ¢(7}; y)
» when unknown, it appears as a scale factor in D

> thus (PA—Ds)/(Ps —Pa) Fon oros
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» ¢ estimated under the larger model, B
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... deviance and scaled deviance, GLMS

» ¢ is either 1 (Binomial, Poisson) or unknown (Normal, Gamma,
inverse Gaussian)

» when known, D measures ‘goodness of fit’
of the fitted model

» because it compares it to the saturated model ¢(7}; y)
» when unknown, it appears as a scale factor in D

> thus (PA—Ds)/(Ps —Pa) Fon oros

¢

» ¢ estimated under the larger model, B

n

A v — y)?
> ¢= n—p; V(i)
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... deviance and scaled deviance, GLMS

» ¢ is either 1 (Binomial, Poisson) or unknown (Normal, Gamma,
inverse Gaussian)

» when known, D measures ‘goodness of fit’
of the fitted model

» because it compares it to the saturated model ¢(7}; y)
» when unknown, it appears as a scale factor in D

> thus (PA—Ds)/(Ps —Pa) Fon oros

¢

» ¢ estimated under the larger model, B

n

A v — y)?
> ¢= n—p; V(i)

» if Poisson or Binomial have over dispersion, qAS > 1, then D no
longer measures goodness of fit
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... deviance and scaled deviance, GLMS

» ¢ is either 1 (Binomial, Poisson) or unknown (Normal, Gamma,
inverse Gaussian)

» when known, D measures ‘goodness of fit’
of the fitted model

» because it compares it to the saturated model ¢(7}; y)
» when unknown, it appears as a scale factor in D

> thus (PA—Ds)/(Ps —Pa) Fon oros

¢

» ¢ estimated under the larger model, B

n

A v — y)?
> ¢= n—p; V(i)

» if Poisson or Binomial have over dispersion, qAS > 1, then D no
longer measures goodness of fit

» multiply estimate of var(5;) by ¢
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Nonlinear models §10.2
> ¥ ~ f(y;imj, ¢), independently, j =1,...,n
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Nonlinear models §10.2
> ¥ ~ f(y;imj, ¢), independently, j =1,...,n
> 7= n(8)
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> ¥ ~ f(y;imj, ¢), independently, j =1,...,n
)
» 3 can be computed by iteratively re-weighted LS
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> ¥ ~ f(y;imj, ¢), independently, j =1,...,n
)
» 3 can be computed by iteratively re-weighted LS

» when (i) ¢ is fixed and
(iiy J 1 observed Fisher info. replaced by expected Fisher info.
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Nonlinear models §10.2
> ¥ ~ f(y;imj, ¢), independently, j =1,...,n
)
» 3 can be computed by iteratively re-weighted LS

» when (i) ¢ is fixed and
(iiy J 1 observed Fisher info. replaced by expected Fisher info.
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Nonlinear models §10.2
> ¥ ~ f(y;imj, ¢), independently, j =1,...,n
)
» 3 can be computed by iteratively re-weighted LS

» when (i) ¢ is fixed and
(iiy J 1 observed Fisher info. replaced by expected Fisher info.

B = (X"WX)TTX Wz (1)

n(B)

> X=X(B) = 5|
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Nonlinear models §10.2

> ¥ ~ f(y;imj, ¢), independently, j =1,...,n
)

» 3 can be computed by iteratively re-weighted LS
» when (i) ¢ is fixed and

(iiy J 1 observed Fisher info. replaced by expected Fisher info.
| 2
B = (X"WX)TTX Wz (1)
vy 9n(B)
» X =X(p) = o5 ;

> W= W(B)=diag(w); w; =E(=%(;/0n?)
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Nonlinear models §10.2
> ¥ ~ f(y;imj, ¢), independently, j =1,...,n
> 7= n(8)
» [3 can be computed by iteratively re-weighted LS
» when (i) ¢ is fixed and

(iiy J 1 observed Fisher info. replaced by expected Fisher info.
| 2
B = (X"WX)TTX Wz (1)
vy 9n(B)
» X =X(p) = o5 ;

> W= W(B)=diag(w); w; =E(=%(;/0n?)
> z=2(B) = (XB+ W), uy(B) = 9t(n)/0n;
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Nonlinear models §10.2

> ¥ ~ f(y;imj, ¢), independently, j =1,...,n

> nj = n;i(8)

» 3 can be computed by iteratively re-weighted LS
» when (i) ¢ is fixed and

(iiy J 1 observed Fisher info. replaced by expected Fisher info.

| 2
B=(X"WX)"TX"Wz (1)
vy 9n(B)

» X =X(p) = o5 ;
> W= W(B) = diag(w); w; = E(—2;/om?)
> z=2(f) = (XB+ W Tu);, u(B) = 0tj(n)/om;
» form of (1) gives definitions of residuals, influence,

leverage, by analogy with linear model §8.6.1,8.6.3,10.2.3

b
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Calcium data: Example 10.1

10.1 - Introduction

Table 10.1  Calcium
uptake (nmales/img) of Time (minutes) Calcium uptake (nmoles/mg)
cells suspended in a

solution of radivactive

calcium, as a function of 045 034170 —0.00438  0.82531
time suspended (minuies) 130 177967 005384 0.64080
(Ranlings, 1983, p. 403). 240 175136 127497 1173%2
4.00 U273 260958 257429
610 317881 300782 267061
8.05 305959 394321 343726
1115 480735 335583 278300
13.15 513825 470274 425702
15.00 360407 415029 342484

Figure 10.1 Calcium .
uptake (nmoles/img) of 5 ° ..
cells suspended in a g
solution of radioactive E < . b
calcium, as a function of ° .
time suspended (minutes). E - . .

E o R

2 . :

g o

Bl .

E .

A

o .

] .

o |
[+] 5 10 15
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... calcium data

>

model
E(y)) = Bo{1—exp(—x;/B1)},  ¥j = E(¥))+¢j, ¢ ~ N(0,0?)

» fitting:

n

: 2
min i — N
Bo,B1 1221(}/] 77])

use nls or nlm; requires starting values

> library (SMPracticals); data(calcium)

> fit = nls(cal ~ b0*(l-exp(-time/bl)), data = calcium, start = list (b0=5,bl=5))
> summary (fit)

Formula: cal ~ b0 » (1 - exp(-time/bl))

Parameters:
Estimate Std. Error t value Pr(>|t])
b0 4.3094 0.3029 14.226 1.73e-13 #*x*

bl 4.7967 0.9047 5.302 1.71e-05 xx*
Signif. codes: 0 ‘xxx’ 0.001 ‘xx’ 0.01 '+’ 0.05 .7 0.1 " 1
Residual standard error: 0.5464 on 25 degrees of freedom

Number of iterations to convergence: 3
Achieved convergence tolerance: 9.55e-07
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... calcium data

[=) Figure 104 Fitofa
- nonlinear model to the
@© ) calcium data. Upper left:
o contours for £,(f. ).
© Upper right: contours for
T ®© E S Lo, 1), where
3 [} 1 = 1/ Lower left:
E-=] _'% = standardized residuals
o plotted against time.
= o Lower right: plot of Cook
=] statistics against
° hj(1 — h), where & is
o = leverage.
3 4 5 6 7 3 4 5 6 7
betal beta0
- . .
.
.. . g
- L2 o
= . . . 3
3 ] "
g S {as" : . * @ =] . ‘
& s = -
.. . g s .
- . . .
.
o . S | .
o —
0 5 10 15 0.0 0.05 010 045 0.20
Time hi(1-h)
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... calcium data

» there are 3 observations at each time point
» can fit a model with a different parameter for each time:
E(y)) =mnj+ €
» the nonlinear model is nested within this; constrains 7; as
above
anova (lm(cal ~ factor(time), data = calcium))

> Analysis of Variance Table

Response: cal

Df Sum Sg Mean Sg F value Pr (>F)
factor (time) 8 48.437 6.0546 22.720 6.688e-08 **x*
Residuals 18 4.797 0.2665

> deviance (fit) # 7.464514 (mistake in Davison)
> sum(residuals (fit) "2) # 7.464514
> (7.464514 - 4.797)/(25 - 18) # 0.3811
.3811/.2665
] 1.429919 ## Davison has 1.53
pf(1.430,7,18, lower=F)
] 0.2538313

>
[1
>
[

1
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calcium data

» checking constant variance assumption
» estimates of o2 at each time, each with 2 degrees of

freedom
> s2 = tapply(calcium$cal, factor(calcium$time), var)

> s2

> s2
0.45 1.3 2.4 6.1 8.05

0.17367258 0.34616902 0.09523507 0. 09422579 0.06686923 0.19656739
11.15 13.15 15

1.08876166 0.19415027 0.14279290

v

plot (sort (s2),gchisq((1:9)/10,2))

qehisq((1:9)/10, 2)
°

Sor(s2)
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Example

STA 2201: Applied Statistics I

Factmonster

1500 meters

1924 |Clas Thunberg, FIN 2:20.8
1928 |Clas Thunberg, FIN 2:21.1
1932 Jack Shea, USA RESI7AS)
1936 | Charles Mathisen, NOR 2:19.2 [OR
1948 |Sverre Farstad, NOR 2:17.6 |OR
1952 [Hjalmar Andersen, NOR 2:20.4
1956 |(TIE) Yevgeny Grishin, USSR| 2:08.6 (WR

& Yuri Mikhailov, USSR 2:08.6 (WR
1960 |(TIE) Roald Aas, NOR 2:10.4

& Yevgeny Grishin, USSR 2:10.4
1964 | Ants Antson, USSR 2:10.3
1968 | Kees Verkerk, NED 2:03.4 |OR
1972 | Ard Schenk, NED 2:02.96 | OR
1976 (Jan Egil Storholt, NOR 1:59.38 | OR
1980 |Eric Heiden, USA 1:55.44|OR
1984 | Gaétan Boucher, CAN 1:58.36
1988|Andre Hoffman, E. Ger 1:52.06 |WR
1992 |Johann Olav Koss, NOR 1:54.81
1994 |Johann Olav Koss, NOR 1:51.29(WR
1998 | Aadne Sondral, NOR 1:47.87|WR
2002 | Derek Parra, USA 1:43.95|WR

February 7, 2014
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http://www.factmonster.com/ipka/A0758121.html

Nonlinear model

» E(Yj) = Bo + B1exp(—pF2X;) “Analysis of running times in Olympic
games”

Olympic winning times

180

o

160
L

winning time
140
1
o
o
o
[e]

T T T T
1940 1960 1980 2000

year .
1500m mens speed skating
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Nonlinear model

» E(Yj) = Bo + B1exp(—pF2X;) “Analysis of running times in Olympic
games”

» winning times are decreasing; rate of improvement is
decreasing; limiting time (5p)

Olympic winning times

180

winning time
140 160
1 1
o
o
o
[e]

120
L
o
o

T T T T
1940 1960 1980 2000

year .
1500m mens speed skating
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> plot(year, fifteen, xlab = "year", ylab = "winning time", main = "150@m mens speed
skating Olympic winning times")
> plot(year, fifteen, xlab = "year", ylab = "winning time", main = "Olympic winning
times", sub = "15@@m mens speed skating")
> X <- year-1924
> nlsCy ~ b@ + bl*exp(-b2*x), start=(list(b@=110, bl= 1, b2=.5)))
Error in nlsCy ~ b@ + bl * exp(-b2 * x), start = (list(b@ = 116, bl = 1,
parameters without starting value in 'data': y
> nls(fifteen ~ b@ + bl*exp(-b2*x), start=1ist(b®=110, bl=1, b2=0.5))
Error in numericDeriv(form[[3L]], names(ind), env) :
Missing value or an infinity produced when evaluating the model
> nls(fifteen ~ b@ + bl*exp(-b2*x), start=1ist(b@=100, bl=1, b2=0.5))
Error in numericDeriv(form[[3L]], names{ind), env) :
Missing value or an infinity produced when evaluogting the model
> nls(fifteen ~ b@ + bl*exp(-b2*x), start=1ist(b@=100, bl=1, b2=0.05))
Error in nls(fifteen ~ b@ + bl * exp(-b2 * x), start = list(b® = 100, :
singular gradient
> nls(fifteen ~ b@ + bl*exp(-b2*x), start=1ist(b@=100, bl=1, b2=0.1))
Error in numericDeriv(form[[3L]], names(ind), env) :
Missing value or an infinity produced when evaluogting the model
> nls(fifteen ~ b@ + bl*exp(-b2*x), start=1ist(b@=100, bl=1, b2=1))
Error in numericDeriv(form[[3L]], names(ind), env) :
Missing value or an infinity produced when evaluating the model
> nls(fifteen ~ b@ + bl*exp(-b2*x), start=1ist(b@=100, bl=.1, b2=1))
Error in numericDeriv(form[[3L]], names(ind), env) :
Missing value or an infinity produced when evaluating the model
> nls(fifteen ~ b@ + bl*exp(-b2*x), start=1ist(b@=100, bl=.1, b2=.01))
Error in numericDeriv(form[[3L]], names(ind), env) :
Missing value or an infinity produced when evaluating the model

Y. LY [ S P Py T T LY



Dichotomizing continuous data (§10.4.1)

> suppose Zj = X[y +oe, j=1,....m ¢~ f()
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Dichotomizing continuous data (§10.4.1)

> suppose Zj = X[y +oe, j=1,....m ¢~ f()
» Y;=1if Z; > 0; otherwise 0
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Dichotomizing continuous data (§10.4.1)

> suppose Zj = X[y +oe, j=1,....m ¢~ f()
» Y;=1if Z; > 0; otherwise 0

>

Pr(Y;=1) = 1-F(-x/y/o) = 1-F(~x] B) = F(x] B),if ...

STA 2201: Applied Statistics Il February 7, 2014 14/33



Dichotomizing continuous data (§10.4.1)

> suppose Z = X/ + o€,

» Y;=1if Z; > 0; otherwise 0

>

Pr(Yi=1)=1-F(—

» examples (Table 10.7)
logistic F(u)y=¢e"/(1+¢€")
normal F(u) = o(uv)
log-Weibull ~ F(u) =1 — exp(—¢€")
Gumbel F(u) = exp{—e™"}

STA 2201: Applied Statistics I February 7, 2014

J=1,...,m €~ 1()

X[ /o) = 1=F(=x]8) = F( B).it .

T

logit log{p/(1 = p)} =x"p
probit o (p) = xTﬂ
log-log —log{—log(p)} = x"B
c-log-log  log{—log(1 —p)} =x"3
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Dichotomizing continuous data (§10.4.1)

> suppose Z = X/ + o€,
» Y;=1if Z; > 0; otherwise 0
>
Pr(Yi=1)=1-F(—
» examples (Table 10.7)
logistic F(u)y=¢e"/(1+¢€")
normal F(u) = o(uv)
log-Weibull ~ F(u) =1 — exp(—¢€")
Gumbel F(u) = exp{—e™"}
>

going from Zto Y
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J=1,...,m €~ 1()

X[ /o) = 1=F(=x]8) = F( B).it .

T

logit log{p/(1 —p)} =x_8
probit o (p) = ng
log-log —log{—log(p)} = x"
c-log-log  log{—log(1 —p)} =x"3

Example 10.17 considers how much information is lost in
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Dichotomizing continuous data (§10.4.1)

v

v

suppose Z = X[y +o¢j, j=1,....m;

Y; =11if Z; > 0; otherwise 0

Pr(Y;=1)=1-F(-

examples (Table 10.7)

logistic F(u)y=¢"/(1+¢€")
normal F(u) = o(uv)
log-Weibull ~ F(u) =1 — exp(—¢€")

Gumbel F(u) = exp{—e~ "}

going from Zto Y

in special case where x; =
z; = 0.5+ 2% + ¢,
yi=1(z>0)
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1,
€ ~ N(0,1)

/o) =1-F(-

logit

probit
log-log
c-log-log

Example 10.17 considers how much information is lost in

-0.9,...

6 ~ (")

X/ B) =

log{p/(1 -

—log{—log(p

log{—

,0.9,1,

v
—

)

e
XXX

—_— =

T

-

QQQQ

T
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... example 10.17

> x=—1,-09,...,09,1,
Z=05+2x+¢, ¢ ~N®O1), y=1(z>0)
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... example 10.17
» x;=-1,-0.9,...,09,1,
z=05+2x+¢, ¢~N(0,1), y=1(z>0)
» [ is least squares estimator from original data
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... example 10.17
» x;=-1,-0.9,...,09,1,
zi=05+2x+¢, €¢~N(0,1), y=1(z>0)
» [ is least squares estimator from original data

—1
> cov(Bz) = (XTX) " = ( ZnXi %)):,é )
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... example 10.17
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» x;=-1,-0.9,...,09,1,
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» [ is least squares estimator from original data
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... example 10.17

>

>

v

v

v

xi=-1,-0.9,...,09,1,
z=05+2x;+¢, € ~N(0,1), y=1(z>0)
Bz is least squares estimator from original data
—1
cov(Bz) = XTX—1:< n ZX’)
P =07 = vk $x2
var(Brz) = vz =1/ 3(x — X)?

A

By is the estimator from dichotomized data
cov(By) = (XTWX)~', W = diag(w;) (p.488)
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... example 10.17

>

xi=-1,-0.9,...,09,1,
z=05+2x;+¢, € ~N(0,1), y=1(z>0)
Bz is least squares estimator from original data

-1

var(Biz) = vz =1/ 3(x — X)?

A

» [y is the estimator from dichotomized data
» cov(By) = (XTWX)~', W =diag(w)) (p.488)

Wi ¢?(Bo + B1X))
T @(—Bo — B1%)®(Bo + B1X))
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... example 10.17

>

xi=-1,-0.9,...,09,1,
z=05+2x;+¢, € ~N(0,1), y=1(z>0)
Bz is least squares estimator from original data

-1

var(Biz) = vz =1/ 3(x — X)?

A

» [y is the estimator from dichotomized data
» cov(By) = (XTWX)~', W =diag(w)) (p.488)

Wi ¢?(Bo + B1X;)
T @(—Bo — B1%)®(Bo + B1X))
, < Swo T wx )1

cov(By) = Swx 5 WjX/?
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... example 10.17

>

xi=-1,-0.9,...,09,1,
z=05+2x;+¢, € ~N(0,1), y=1(z>0)
Bz is least squares estimator from original data

-1

var(Biz) = vz =1/ 3(x — X)?

A

» [y is the estimator from dichotomized data
» cov(By) = (XTWX)~', W =diag(w)) (p.488)

>

>

Wi ¢?(Bo + B1X))
T @(—Bo — B1%)®(Bo + B1X))
1
var(Byy) = vy = (XTWX) 5y,
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... example 10.17

» Figure 10.6 (right) plots 31/4/>_(X; — X)? = 31/vz on the
x-axis, and 31 /vy on the y-axis

10.4 - Proportion Data 489

Figure 10.6  Efficiency
loss due to reducing Ll
continuous variables to

binary ones. Left panel:

simulated data. Blobs =
above the dotted line are

counted as successes, with

zeros below it as failures; Noo
the solid line is (L5 + 2x.

Right panel: Comparison

of asymptotic ¢ statistics o
when continuous data are

dichotomized, for normal

error distribution, when -
Bo =0.5, 1, L5 (solid, E
dots, dashes).

Standardized slope (binary)

00 05 1.0 15 20 25 3.0

-0 05 00 05 1.0 0 2 4 6 8 10 12

X Standardized slope (continuous)
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... example 10.17
» Figure 10.6 (right) plots 31/4/>_(X; — X)? = 31/vz on the
x-axis, and 31 /vy on the y-axis
» trying to compare vz and vy, as well as indicate behaviour

of B1y//Vy as By — o0

10.4 - Proportion Data 489

Figure 10.6  Efficiency
loss due to reducing
continuous variables to
binary ones. Left panel:
simulated data. Blobs =
above the dotted line are

counted as successes, with

zeros below it as failures; Noo
the solid line is (L5 + 2x.

Right panel: Comparison

of asymptotic ¢ statistics o
when continuous data are

dichotomized, for normal

error distribution, when -
Bo =0.5, 1, L5 (solid, E
dots, dashes).

Standardized slope (binary)

00 05 1.0 15 20 25 3.0

-0 05 00 05 1.0 0 2 4 6 8 10 12

X Standardized slope (continuous)
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Binomial regression example

log(dose) deaths sample size
-0.86 0
-0.30 1
-0.05 3
0.73 5

yj ~ Bin(5,7), log{m;/(1—m;)} = Bo+B1X

oo O

> bioassay
X n
1 -0.86 5
2 -0.30 5
3 -0.05 5
4
>

U wkr oK

0.73 5
summary (glm(cbind(r,n-r) "x, data = biocassay, family = binomial)

Call:
glm(formula = cbind(r, n - r) ~ x, family = binomial, data = bioassay)

Deviance Residuals:
1 2 3 4
-0.17236 0.08133 -0.05869 0.12237

Coefficients:

Estimate Std. Error z value Pr(>|z|)
(Intercept) 0.8466 1.0191 0.831 0.406
X 7.7488 4.8728 1.590 0.112

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 15.791412 on 3 degrees of freedom
Residual deviance: 0.054742 on 2 degrees of freedom
AIC: 7.9648

Number of Fisher Scoring iterations: 7
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2 x 2 table §10.4.2

» special case: n =1 (binary regression)
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2 x 2 table §10.4.2
» special case: n =1 (binary regression)
» covariate takes values 0, 1

R Pr()/j:1|szo):1ixe+(§&)30):
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2 x 2 table §10.4.2
special case: n =1 (binary regression)
covariate takes values 0, 1

exp (o)
Pr(Yi=1]x,=0) = =

=116 =0 = 1 o)

exp(Bo + B1)

P =1lx=1= 1rexp(Bo+B1)

v

v

v

v
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exp (o)
Pr(Yi=1]x,=0) = =

=116 =0 = 1 o)

exp(Bo + B1)

P =1lx=1= 1rexp(Bo+B1)

intext: ¥ < By, A< Bo, T + x

v

v

v

v

v
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2 x 2 table §10.4.2

» special case: n =1 (binary regression)
» covariate takes values 0, 1

» Pr(Y; =1 ])9:0):71 ixé)fg?;o):”

1+ exp(Bo + 1)

intext: ¥ < By, A< Bo, T + x

v

v

Y =1 is the event of interest — death, cure, heart attack, ...
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2 x 2 table §10.4.2

» special case: n =1 (binary regression)
» covariate takes values 0, 1

ex
» Pr(Y; =1 ])(/-:0):1+§)E§E;O) =

1+ exp(Bo + 1)

intext: ¥ < By, A< Bo, T + x

v

v

Y =1 is the event of interest — death, cure, heart attack, ...

x = 1 is the factor of interest — treatment, smoking status,
exposure, ... (Davison calls these 'cases’)

v
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2 x 2 table §10.4.2

» special case: n =1 (binary regression)
» covariate takes values 0, 1
exp(So)
» Pr(Yi=1|x=0)=-—"_ =1
V=T =0 =1 ()
exp(Bo + 1)
Pr(Y;=1|x,=1) = =
" Prl=Tig=1) Trexp(Bo+p1)

> intext: ¥ < B, A« Bo, T < x

» Y =1 is the event of interest — death, cure, heart attack, ...

» x =1 is the factor of interest — treatment, smoking status,
exposure, ... (Davison calls these 'cases’)

» it is more usual to call the units with Y = 1 the cases
(dead, sick, recovered, ...), and Y = 0 the controls (alive,
well, not recovered ...)
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Prospective and retrospective sampling C &D §3.6

Table 3.6 Distribution of a binary
ezplanatory variable, z, and response
variable, y, in (a) population study, (b)
prospective or cohort study, (c)
retrospective or case-control study

(a) Population

y=0 y=1
=0 oo To1
=1 mp L

(b) Prospective study

y=0 y=1

z=0 moo/(moo+mo1) o1/ (mo0 + 7o1)
z=1 mo/(mo+m11) m11/(m0+m11)

(c) Retrospective study

y=0 y=1

z=0 mpo/(moo +710) To1/(To1 +711)
z=1 mo/(moo +m0) m11/(mo1 +m11)

mjs=Pr(z=1iy=s), zexplanatory, y response
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... prospective and retrospective

Population
y=0 y=1
x=0 00 01
x=1 T10 1

Prospective study

y=0 y=1
x=0 moo/(moo +m01) To1/(mo0 + 7o1)
x=1 mo/(mo+m11) m1/(m10+ 711)

Retrospective study
y=0 y=1
x =0 moo/(moo + m10) mo1/(mo1 + m11)
x =1 mo/(moo + m0) m11/(m01 + 711)

odds ratio in 2nd and 3rd table the same
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494 10 - Nonlinear Regression Models

be assembled more easily and cheaply than a prospective study, though the lack of
randomization weakens subsequent inferences. Let Z = 1 indicate that an individual
is chosen for the retrospective study, and suppose that this occurs with probabilities

P(Z=1|Y=1)=p|, Pr(Z=1]|Y =0)=po,

independent of treatment status 7. Then the success probability for an individual
who was treated, conditional on their being chosen for inclusion in the study is
Pr(Y = 1| Z=1,T = 1). This equals

P(Z=1|Y=1DP(Y=1|T=1)
PZ=1|Y=DP(Y =1|T=D+P(Z=1|Y=0Pe(Y =0|T = 1)

by Bayes’ theorem, so
p1€}”+"' eV

Py =11Z=1,T=1)= = ——
ut [ ) ple“"” + po 1 4 e +¥

where A" = A + log(p1/po). A similar argument gives

o

1+ e

Py =11Z2=1,T=0)= A
so although retrospective sampling alters 2, the difference of log odds ¥ is unchanged.
This gives a strong motivation for using i to summarize the treatment effect, partic-
ularly if estimates from both types of study will ultimately be combined.

This argument applies also if ¥ is replaced by x" 8, where x contains covariates as
well as an indicator of treatment status. The key point is that the selection probabilities
p1 and py must be independent of x.



Contingency Tables

258

Example 10.19

6 - Stochastic Models

Age (years) Smokers Non-smokers
Overall 139/582 (24) 230732 (31)
18-24 2/55 (4) 1/62 (2)
25-34 3/124 2) 5/157 (3)
35-44 14/109 (13) 7121 (6)
45-54 27/130 (21) 12/78 (15)
55-64 51/115 (44) 40/121 (33)
65-74 20736 (81)  101/129 (78)
154+ 13/13 (100) 64/64 (100)
Smoker Non-smoker

Table 6.8 Twenty-year
survival and smoking
status for 1314 women
(Appleton et al., 1996).
The smoker and
non-smoker columns
contain number dead/total
(% dead).

dead
alive

139 (24%)

443

230 (31%)
502

total

582

732

1314
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... Example 10.19

> summary (glm(cbind(alive,dead) ~ smoker, data = smoking, family = binomial))
Call:
glm(formula = cbind(alive, dead) ~ smoker, family = binomial,
data = smoking)
Deviance Residuals:
Min 10 Median 30 Max
-12.173 -5.776 1.869 5.674 9.052
Coefficients:
Estimate Std. Error z value Pr(>|z]|)
(Intercept) 0.78052 0.07962 9.803 < 2e-16 *xx
smoker 0.37858 0.12566 3.013 0.00259 **

Signif. codes: 0 ‘#%x’ 0.001 ‘s’ 0.01 ‘x" 0.05 *.” 0.1 ' 1
(Dispersion parameter for binomial family taken to be 1)

Null deviance: 641.5 on 13 degrees of freedom
Residual deviance: 632.3 on 12 degrees of freedom

AIC: 683.29

Number of Fisher Scoring iterations: 4
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... example 10.19

Smoker Non-smoker

dead 139 (24%)
alive 443

230 (31%)
502

total 582 732

> anova (glm(cbind(alive, dead) smoker, data = smoking,
Analysis of Deviance Table
Model: binomial, link: logit
Response: cbind(alive, dead)
Terms added sequentially (first to last)
Df Deviance Resid. Df Resid. Dev

NULL 13 641.5
smoker 1 9.2003 12 632.3
> with(smoking, xtabs(cbind(dead,alive) smoker)
smoker dead alive

0 230 502

1 139 443
> summary (.Last.value)
Call: xtabs(formula = cbind(dead, alive) ~ smoker)
Number of cases in table: 1314
Number of factors: 2
Test for independence of all factors:
Chisg = 9.121, df = 1, p-value = 0.002527

1314

family = binomial))
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... Example 10.19

sm non-sm

sm

non-sm

sSm non-sm

d 2
a 53

1

3

61 | 121

152

5

14 7
95 14 | ...

55
Age 18-24

62 | 124

157

25-34

smoker + factor (age),

> summary (glm(cbind(alive, dead)
Coefficients:

Estimate Std. Error z value
(Intercept) 3.8601 0.5939 6.500
smoker -0.4274 0.1770 -2.414
factor (age) 25-34 -0.1201 0.6865 -0.175
factor (age) 35-44 -1.3411 0.6286 -2.134
factor (age) 45-54 -2.1134 0.6121 -3.453
factor (age) 55-64 -3.1808 0.6006 -5.296
factor (age) 65-74 -5.0880 0.6195 -8.213
factor (age) 75+ -27.8073 11293.1437 -0.002
Signif. codes: 0 ‘%%’ 0.001 ‘s’ 0.01 “x’

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 641.
Residual deviance: 2.
AIC: 65.377

Number of Fisher Scoring iterations:

4963 on 13
6

3809 on

0.05 .7 0.1

Pr(>lzl)
8.05e-11
0.015762
0.861178
0.032874
0.000555
1.18e-07
< 2e-16
0.998035

degrees of freedom
degrees of freedom

20

109 121

35-44 .

data = smoking, family = binomial)

ok k

ok k
ok k

* ok ok

v
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Log-linear models 10.5.2

» suppose we have 3 factors, each with several levels
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Log-linear models 105.2

» suppose we have 3 factors, each with several levels
» observe a response at each combination of factors
» linear model might be

y;jk:u+a;+5j+7k+eijk, k:1,...,K;j:1,...,J;i:1,.../
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Log-linear models 105.2

» suppose we have 3 factors, each with several levels
» observe a response at each combination of factors
» linear model might be

y;jk:u+a;+5j+7k+eijk, k:1,...,K;j:1,...,J;i:1,.../
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Yik = o+ i+ Bj + vk + (aB)j + (av)ik + (B)jk + €ijk
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Log-linear models 105.2

» suppose we have 3 factors, each with several levels
» observe a response at each combination of factors
» linear model might be

YUk:M+ai+5j+'Yk+5ijka k:1,,K,j:1,,J,I:1,/
> Oor
Yik = o+ i+ Bj + vk + (aB)j + (av)ik + (B)jk + €ijk

» if the yjx are positive counts, rather than continuous, then
Poisson model could have

Yiik ~ Po(pik), log(pijk) = i+ aj + Bj + vk
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Log-linear models 105.2

» suppose we have 3 factors, each with several levels
» observe a response at each combination of factors
» linear model might be

YUk:M+ai+5j+'Yk+5ijka k:1,,K,j:1,,J,I:1,/
> Oor
Yik = o+ i+ Bj + vk + (aB)j + (av)ik + (B)jk + €ijk

» if the yjx are positive counts, rather than continuous, then
Poisson model could have

Yiik ~ Po(pik), log(pijk) = i+ aj + Bj + vk

> or

log(pik) =+ ai + Bj + vk + (aB)j + (av)ik + (B7)jk
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Example 10.23

8 I+ Imtraduction

Tahle 1.4 Lung cancer

ily i i deaths in British male
s Dhaily cigarette consumption o i Pt gL
t The table gives man-years
smoking §  Nonsmokers -9 10-14  15-19 20-24 15-34 354+ Mlisb’nuu%helef:uﬁd
lung cancer,
15-19 10366/1 izl ST 4317 5683 3M2 670 cross-classified by years
0-24 k162 2037 3286/1 4114 63851 405001 1166 of smoking, laken L be
2520 S060 D288 2S46/ 3IES BN 400004 1482 22 e 20 ysne fad
30-34 4406 2015 12192 25604 46876 42680 15RO e o i
35-39 3512 1e4E1 1826 1303 3646/5 35200 133406
4044 2201 131062 1386&71 133472 2411412 2424711 924410
4549 1421 @27 ORE2 84012 15679 1409/10 3567
50-54 1121 71003 6844 47002 B3TT 66X 155/4
55-59 k2602 il 4493 280N 4167 28403 104/1

> data (lung.cancer)
> lung.cancer([1:3,]

years.smok cigarettes Time y
1 15-19 0 10366 1
2 15-19 1-9 3121 0
3 15-19 10-14 3577 0
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... example 10.23

8 I+ Imtraduction

Tahle 1.4 Lung cancer

ily i i deaths in British male
s Dhaily cigarette consumption o i Pt gL
t The table gives man-years
smoking §  Nonsmokers -9 10-14  15-19 20-24 15-34 354+ Mlisb’nuuﬁhﬁleﬂuﬁaﬂ
lung cancer,
15-19 10366/1 izl ST 4317 5683 3M2 670 cross-classified by years
0-24 k162 2037 3286/1 4114 63851 405001 1166 of smoking, laken L be
2520 S060 D288 2S46/ 3IES BN 400004 1482 22 e 20 ysne fad
30-34 4406 2015 12192 25604 46876 42680 15RO e o i
35-39 3512 1e4E1 1826 1303 3646/5 35200 133406
4044 2201 131062 1386&71 133472 2411412 2424711 924410
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55-59 k2602 il 4493 280N 4167 28403 104/1
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... example 10.23

B 1 . Introduction
Tahle 1.4 Lung cancer
ilv oi i deaths in British male
s Dhaily cigarette consumption o i Pt gL
smoking ¢ Nonsmokers -9 10-14  15-19 20-M 2534 35+ The table gives man-years
at risk/number of cases of
lung cancer,
15-19 103661 3121 35TT 4317 5663 342 670 cross-classified by years
20-24 Bl62 2937 3286 4214 63851 405001 1166 of smoking, Laken to be
2529 S060 2288 IS4G/ 3IBS S48 47004 1482 ﬁ:‘;r"‘;fff';:l‘;““'
-34 4406 2005 221072 256044 46876 42680 15RO o gl day
15-30 3512 IG4B/ IB26 1803 364ES 3520 13366
40-44 2201 13102 13861 13342 2411412 242411 924710
4540 1421 927 OB&2  B4U2 15670 1409410 5567
50-54 1121 7103 6844 4702 BSTT 66YS 2554
55-59 §26/2 606 4494 2805 4167 2843 10401

Yig ~ Poisson( Tigpitg) T4 = man-years
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... example 10.23

B 1 . Introduction
Tahle 1.4 Lung cancer
ilv oi i deaths in British male
s Dhaily cigarette consumption o e 1o,
smoking ¢ Nonsmokers -9 10-14  15-19 20-M 2534 35+ The table gives man-years
at risk/number of cases of
lung cancer,
15-19 103661 3121 35TT 4317 5663 342 670 cross-classified by years
20-24 Bl62 2937 3286 4214 63851 405001 1166 of smoking, laken 1o be
2529 S060 2288 IS4G/ 3IBS S48 47004 1482 ﬁ:‘;r"‘o}ff';:l‘;““'
-34 4406 2005 221072 256044 46876 42680 15RO o gl day
15-30 3512 IG4B/ IB26 1803 364ES 3520 13366
40-44 2201 13102 13861 13342 2411412 242411 924710
4540 1421 927 OB&2  B4U2 15670 1409410 5567
50-54 1121 7103 6844 4702 BSTT 66YS 2554
55-59 §26/2 606 4494 2805 4167 2843 10401

Yo ~ Poisson(Tigpitg)

T4 = man-years

pid = exp(at + Bq)
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... Example 10.23

> summary (glm(y ~ cigarettes + years.smok + offset (log(Time)),
family = poisson, data = lung.cancer))

Coefficients:
Estimate Std. Error z value Pr(>]|z])

(Intercept) -12.5784 1.1475 -10.961 < 2e-16 *#*x*
cigarettesl-9 1.2200 0.7073 1.725 0.084547 .

cigarettesl0-14 2.0991 0.6363 3.299 0.000971 *x*x*
cigarettesl5-19 2.3089 0.6327 3.649 0.000263 *=*x
cigarettes20-24 2.9009 0.5956 4.870 1.11e-06 *x*x*
cigarettes25-34 3.1162 0.5947 5.240 1.61e-07 *xxx
cigarettes35+ 3.6059 0.6048 5.962 2.49e-09 *xx*

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 445.099 on 62 degrees of freedom
Residual deviance: 51.471 on 48 degrees of freedom
AIC: 201.31
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... log-linear models

» p.501, fit a 4-parameter model
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» p.501, fit a 4-parameter model
> A(d, 1) = (G0 + Brd)t
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... log-linear models
» p.501, fit a 4-parameter model
> A(d, 1) = (G0 + Brd)t

» if 8o = 0, 81 not estimable; similarly if 5y =0
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... log-linear models
» p.501, fit a 4-parameter model
> A(d, 1) = (G0 + Brd)t

» if 8o = 0, 81 not estimable; similarly if 5y =0
> reparameterize to \(d, t) = {€" exp(y1 + Sz2log d)} exp(Bslog f)
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... log-linear models
» p.501, fit a 4-parameter model
> A(d, 1) = (fo + prd)t

» if 8o = 0, 81 not estimable; similarly if 5y =0
> reparameterize to \(d, t) = {€" exp(y1 + Sz2log d)} exp(Bslog f)

» model fits quite well, fewer estimated parameters, g2 = 1
corresponds to linear growth
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... log-linear models

>

>

p.501, fit a 4-parameter model
A(d, t) = (Bo + p1d%)t%

if B2 = 0, 51 not estimable; similarly if 3 =0
reparameterize to \(d,t) = {€" exp(y1 + S2log d)} exp(Bslog §)

model fits quite well, fewer estimated parameters, 5, = 1
corresponds to linear growth

see also Example 10.21 for a Poisson example (y is number of
goals scored in soccer match)
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... log-linear models
» p.501, fit a 4-parameter model
> A(d, 1) = (fo + prd)t

» if 8o = 0, 81 not estimable; similarly if 5y =0
> reparameterize to \(d, t) = {€" exp(y1 + Sz2log d)} exp(Bslog f)

» model fits quite well, fewer estimated parameters, g2 = 1
corresponds to linear growth

> see also Example 10.21 for a Poisson example (y is number of
goals scored in soccer match)

» with the Poisson-multinomial connection, we can also fit
contingency tables with more than one response factor
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... log-linear models

>

>

p.501, fit a 4-parameter model
A(d, t) = (Bo + p1d%)t%

if B2 = 0, 51 not estimable; similarly if 3 =0
reparameterize to \(d,t) = {€" exp(y1 + S2log d)} exp(Bslog §)

model fits quite well, fewer estimated parameters, 5, = 1
corresponds to linear growth

see also Example 10.21 for a Poisson example (y is number of
goals scored in soccer match)

with the Poisson-multinomial connection, we can also fit
contingency tables with more than one response factor

Faraway: Extending the Linear Model with R; Agresti: Analysis of
Categorical Data
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... log-linear models

>

>

p.501, fit a 4-parameter model
A(d, t) = (Bo + p1d%)t%

if B2 = 0, 51 not estimable; similarly if 3 =0
reparameterize to \(d,t) = {€" exp(y1 + S2log d)} exp(Bslog §)

model fits quite well, fewer estimated parameters, 5, = 1
corresponds to linear growth

see also Example 10.21 for a Poisson example (y is number of
goals scored in soccer match)

with the Poisson-multinomial connection, we can also fit
contingency tables with more than one response factor

Faraway: Extending the Linear Model with R; Agresti: Analysis of
Categorical Data

skip "marginal models” (p.505) and ordinal data (§10.5.2)
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