
Today
I Bayesian analysis of logistic regression

I Generalized linear mixed models

I CD on fixed and random effects

I HW 2 due February 28

I Case Studies SSC 2014 Toronto

I March/April: Semi-parametric regression (§10.7),
generalized additive models, penalized regression
methods (ridge regression, lasso); proportional hazards
models (§10.8)
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http://www.ssc.ca/en/meetings/2014/case-studies


Bayesian logistic regression
I rj ∼ Binom(mj ,pj)

I log
pj

1− pj
= α + βxj

I L(α, β; y) ∝ exp{αΣyj + βΣ(xjyj)− Σmj log(1 + eα+βxj )}

I π(α, β | y) ∝ L(α, β; y)π(α, β)

I flat prior π(α, β) ∝ 1 popular for regression parameters
proper posterior?

I implemented in the library LearnBayes via
logisticpost Albert, 2009 Bayesian Computation with R

I bioassay data
log(dose) deaths sample size

-0.86 0 5
-0.30 1 5
-0.05 3 5
0.73 5 5
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... Bayesian logistic regression
mycontour(logisticpost,c(-4,10,-10,35),bioassay)
## the limits were chosen using information in Gelman et al.,
## although they used 40 as the upper limit for beta, but I could not
> s <- simcontour(logisticpost, c(-4,10, -10, 35),m = 1000, data =bioassay)
> points(s) # just plotted 1000 points, otherwise plot is too black
> s <- simcontour(logisticpost, c(-4,10, -10, 35),m = 10000, data =bioassay)
# samples from posterior; more samples for getting quantiles
> quantile(s$x, c(0.025, 0.5, 0.975))

2.5% 50% 97.5%
-0.6066507 1.2277272 3.7397231
> quantile(s$y, c(0.025, 0.5 0.975))

2.5% 50% 97.5%
3.463158 10.770726 24.980196

> quantile(-s$x/s$y,c(.025,.5,.975))
2.5% 50% 97.5%

-0.27589414 -0.11277051 0.09982482
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... Bayesian logistic regression

point estimate lower 2.5% bound upper 2.5% bound
α Wald 0.8466 -1.1510 2.844

LRT -0.8305 3.253
Bayes -0.5911 3.673

β Wald 7.749 -1.8020 17.30
LRT 1.7060 18.01

Bayes 3.4213 25.30

ED50 Wald -0.1092 -0.2963 0.0778
Bayes -0.2783 0.1067

> library(MCMCpack)
> posterior <- MCMClogit(y˜x,data = databern)
> summary(posterior)
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... Bayesian logistic regression

> library(MCMCpack)
> posterior <- MCMClogit(y˜x,data = databern)
> summary(posterior)

Iterations = 1001:11000
Thinning interval = 1
Number of chains = 1
Sample size per chain = 10000

1. Empirical mean and standard deviation for each variable,
plus standard error of the mean:

Mean SD Naive SE Time-series SE
(Intercept) 1.316 1.086 0.01086 0.03623
x 11.715 5.672 0.05672 0.20781

2. Quantiles for each variable:
2.5% 25% 50% 75% 97.5%

(Intercept) -0.63 0.5706 1.235 1.984 3.623
x 3.42 7.4827 10.731 15.003 24.931
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... Bayesian logistic regression

point estimate lower 2.5% bound upper 2.5% bound
α Wald 0.8466 −1.1510 2.844

LRT −0.8305 3.253
Bayes −0.5911 3.673

−0.6300 3.623

β Wald 7.749 −1.8020 17.30
LRT 1.7060 18.01

Bayes 3.4213 25.30
3.4200 24.93

ED50 Wald −0.1092 −0.2963 0.0778
Bayes −0.2783 0.1067

−0.2749 0.1049

> library(MCMCpack)
> posterior <- MCMClogit(y˜x,data = databern)
> summary(posterior)
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Posterior mode

s # samples from the posterior
[,1] [,2]

[1,] 0.078564218 4.590313
[2,] -0.130540858 6.144828
[3,] 1.113368385 14.986545
[4,] -0.567003218 6.761264
[5,] 0.551048901 5.926414
[6,] 1.563279919 14.031613
[7,] 0.294370457 3.165679
[8,] 1.869013672 14.637177
[9,] 0.247018100 11.806818

[10,] 2.018192523 16.877825
[11,] 1.751898117 11.932195
[12,] 3.013420092 20.085116

> post = density(s$y)
> which(post$y==max(post$y))
[1] 143
> post$x[143]
[1] 9.209531
> post2 = density(s$y, bw=1.5)
> which(post2$y == max(post2$y))
[1] 150
> post2$x[150]
[1] 8.867711
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Dependence through random effects
I Example: longitudinal data
I Yj = (Yj1, . . . ,Yjnj ) vector of observations on j th individual
I recall random effects model (normal theory):

Yj = Xjβ + Zjbj + εj ; bj ∼ N(0, σ2Ωb), εj ∼ N(0, σ2Ωj)

I marginal distribution:

Yj ∼ N(Xjβ, σ
2Υ−1

j ) = N(Xjβ, σ
2(Ωj + ZjΩbZ T

j ))

I sample of n i.i.d. such vectors leads to

Y ∼ N(Xβ, σ2Υ−1),

I Ω = diag(Ω1, . . . ,Ωm), Ω̃b = diag(Ωb, . . . ,Ωb),

I Z = diag(Z1, . . . ,Zm), σ2Υ−1 = Ω + Z Ω̃bZ T
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Example: Panel Study of Income Dynamics Faraway, §9.1
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library(lattice)
xyplot(income ˜ year | person, data = psid,
type="l", subset = (person < 21), strip = F)
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Example: Panel Study of Income Dynamics Faraway, §9.1
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xyplot(log(income+100) ˜ year | sex, data = psid,
type="l", groups=person)
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... PSID

> data(psid)
> head(psid)
age educ sex income year person

1 31 12 M 6000 68 1
2 31 12 M 5300 69 1
3 31 12 M 5200 70 1
4 31 12 M 6900 71 1
5 31 12 M 7500 72 1
6 31 12 M 8000 73 1
> dim(psid)
[1] 1661 6
> library(lme4)
> psid$cyear = psid$year - 78
> mmod = lmer(log(income) ˜ cyear*sex + age + educ +
+ (cyear | person), data=psid)

log(income)ij = µ+ αyeari + βsexj + (αβ)yeari × sexj

+β2educj + β3agej + b0j + b1jyeari + εij ,

εij ∼ N(0, σ2), bj ∼ N2(0, σ2Ωb)
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... PSID

> mmod = lmer(log(income) ˜ cyear*sex + age + educ +
+ (cyear | person), data=psid)

log(income)ij = µ+ αyeari + βsexj + (αβ)yeari × sexj

+β2educj + β3agej + b0j + b1jyeari + εij ,

εij ∼ N(0, σ2), bj ∼ N2(0, σ2Ωb)

I j indexes subjects, i indexes year
I variation in intercept between subjects b0j ;

in increase per year between subjects b1j

I year-to-year variation within subjects εij
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... PSID

log(income)ij = µ+ αyeari + βsexj + (αβ)yeari × sexj

+β2educj + β3agej + b0j + b1jyeari + εij ,

εij ∼ N(0, σ2), bj ∼ N2(0, σ2Ωb)

> summary(mmod)
Linear mixed model fit by REML [’lmerMod’]
Formula: log(income) ˜ cyear * sex + age + educ + (cyear | person)

Data: psid

REML criterion at convergence: 3819.776

Random effects:
Groups Name Variance Std.Dev. Corr
person (Intercept) 0.2817 0.53071

cyear 0.0024 0.04899 0.19
Residual 0.4673 0.68357
Number of obs: 1661, groups: person, 85
Fixed effects:

Estimate Std. Error t value
(Intercept) 6.67420 0.54332 12.284
cyear 0.08531 0.00900 9.480
sexM 1.15031 0.12129 9.484
age 0.01093 0.01352 0.808
educ 0.10421 0.02144 4.861
cyear:sexM -0.02631 0.01224 -2.150
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Example: Acuity of Vision Faraway, §9.2

npower
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> xyplot(acuity ˜ npower | subject, data=vision,
+ type="l", groups=eye, lty=1:2, layout = c(4,2))
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... vision

> head(vision)
acuity power eye subject npower

1 116 6/6 left 1 1
2 119 6/18 left 1 2
3 116 6/36 left 1 3
4 124 6/60 left 1 4
5 120 6/6 right 1 1
6 117 6/18 right 1 2
> eyemod <- lmer(acuity ˜ power + (1 | subject) +
+ (1 | subject:eye), data = vision)

yijk = µ+ pj + si + eik + εijk

si ∼ N(0, σ2
s ), eik ∼ N(0, σ2

e), εijk ∼ N(0, σ2)
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... vision

> summary(eyemod)
Linear mixed model fit by REML [’lmerMod’]
Formula: acuity ˜ power + (1 | subject) + (1 | subject:eye)

Data: vision

REML criterion at convergence: 328.7098

Random effects:
Groups Name Variance Std.Dev.
subject:eye (Intercept) 10.27 3.205
subject (Intercept) 21.53 4.640
Residual 16.60 4.075

Number of obs: 56, groups: subject:eye, 14; subject, 7

Fixed effects:
Estimate Std. Error t value

(Intercept) 112.6429 2.2349 50.40
power6/18 0.7857 1.5400 0.51
power6/36 -1.0000 1.5400 -0.65
power6/60 3.2857 1.5400 2.13

Correlation of Fixed Effects:
(Intr) pw6/18 pw6/36

power6/18 -0.345
power6/36 -0.345 0.500
power6/60 -0.345 0.500 0.500
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Generalized linear mixed models
I

f (yj | θj , φ) = exp{
yjθj − b(θj)

φaj
+ c(yj ;φaj)}

I

b′(θj) = µj

I random effects

g(µj) = xT
j β + zT

j b, b ∼ N(0,Ωb)

I likelihood

L(β, φ; y) =
n∏

j=1

∫
f (yj | β,b, φ)f (b; Ωb)db
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... generalized linear mixed models
I likelihood

L(β, φ; y) =
n∏

j=1

∫
f (yj | β,b, φ)f (b; Ωb)db

I doesn’t simplify unless f (yj | b) is normal
I solutions proposed include

I numerical integration, e.g. by quadrature
I integration by MCMC
I Laplace approximation to the integral – penalized

quasi-likelihood
I reference: MASS library and book (§10.4):
glmmNQ, GLMMGibbs, glmmPQL, all in library(MASS)
glmer in library(lme4)
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Example: Balance experiment Faraway, 10.1

I effects of surface and vision on balance; 2 levels of
surface; 3 levels of vision

I surface: normal or foam
I vision: normal, eyes closed, domed
I 20 males and 20 females tested for balance, twice at each

of 6 combinations of treatments
I auxiliary variables age, height, weight

Steele 1998, OzDASL

I linear predictor: Sex + Age + Weight + Height +
Surface + Vision + Subject(?)

I response measured on a 4 point scale; converted by
Faraway to binary (stable/not stable)

I analysed using linear models at OzDASL
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http://www.statsci.org/data/oz/ctsib.html


... balance

> balance <- glmer(stable ˜ Sex + Age + Height + Weight + Surface + Vision +
+ (1|Subject), family = binomial, data = ctsib)

# Subject effect is random

> summary(balance)
Generalized linear mixed model fit by maximum likelihood [’glmerMod’]

...

Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 8.197 2.863

Number of obs: 480, groups: Subject, 40

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 9.920750 13.358013 0.743 0.458
Sexmale 2.825305 1.762383 1.603 0.109
Age -0.003644 0.080928 -0.045 0.964
Height -0.151012 0.092174 -1.638 0.101
Weight 0.058927 0.061958 0.951 0.342
Surfacenorm 7.524423 0.888827 8.466 < 2e-16 ***
Visiondome 0.683931 0.530654 1.289 0.197
Visionopen 6.321098 0.839469 7.530 5.08e-14 ***
---
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... balance

> library(MASS)

> balance2 <- glmmPQL(stable ˜ Sex + Age + Height + Weight + Surface + Vision,
+ random = ˜1 | Subject, family = binomial, data = ctsib)
> summary(balance2)

Random effects:
Formula: ˜1 | Subject

(Intercept) Residual
StdDev: 3.060712 0.5906232

Variance function:
Structure: fixed weights
Formula: ˜invwt

Fixed effects: stable ˜ Sex + Age + Height + Weight + Surface + Vision
Value Std.Error DF t-value p-value

(Intercept) 15.571494 13.498304 437 1.153589 0.2493
Sexmale 3.355340 1.752614 35 1.914478 0.0638
Age -0.006638 0.081959 35 -0.080992 0.9359
Height -0.190819 0.092023 35 -2.073601 0.0455
Weight 0.069467 0.062857 35 1.105155 0.2766
Surfacenorm 7.724078 0.573578 437 13.466492 0.0000
Visiondome 0.726464 0.325933 437 2.228873 0.0263
Visionopen 6.485257 0.543980 437 11.921876 0.0000
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... balance

> balance4 <- glmer(stable ˜ Sex + Age + Height + Weight + Surface + Vision +
+ (1|Subject), family = binomial, data = ctsib, nAGQ = 9)
> summary(balance4)

Random effects:
Groups Name Variance Std.Dev.
Subject (Intercept) 7.8 2.793

Number of obs: 480, groups: Subject, 40

Fixed effects:
Estimate Std. Error z value Pr(>|z|)

(Intercept) 13.551847 13.067369 1.037 0.2997
Sexmale 3.109307 1.724797 1.803 0.0714 .
Age -0.001804 0.079161 -0.023 0.9818
Height -0.175061 0.090239 -1.940 0.0524 .
Weight 0.065742 0.060606 1.085 0.2780
Surfacenorm 7.428046 0.872416 8.514 < 2e-16 ***
Visiondome 0.682509 0.527836 1.293 0.1960
Visionopen 6.210825 0.822012 7.556 4.17e-14 ***
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Non-specific effects C&D §7.2

I example: a clinical trial involves several or many centres
I an agricultural field trial repeated at a number of different

farms, and over a number of different growing seasons
I a sociological study repeated in broadly similar form in a

number of countries
I laboratory study uses different sets of analytical apparatus,

imperfectly calibrated
I such factors are non-specific
I how do we account for them

I on an appropriate scale, a parameter represents a shift in
outcome

I more complicated: the primary contrasts of concern vary
across centres

I i.e. treatment-center interaction
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... non-specific effects
I suppose no treatment-center interaction
I example:

logit{Pr(Yci = 1)} = αc + xT
ciβ

I should αc be ?fixed? or ?random?
I effective use of a random-effects representation will require

estimation of the variance component corresponding to the
centre effects

I even under the most favourable conditions the precision
achieved in that estimate will be at best that from
estimating a single variance from a sample of a size equal
to the number of centres

I very fragile unless there are at least, say, 10 centres and
preferably considerably more
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... non-specific effects
I if centres are chosen by an effectively random procedure

from a large population of candidates, ... the
random-effects representation has an attractive tangible
interpretation. This would not apply, for example, to the
countries of the EU in a social survey

I some general considerations in linear mixed models:
I in balanced factorial designs, the analysis of treatment

means is unchanged
I in other cases, estimated effects will typically be ‘shrunk’,

and precision improved
I representation of the nonspecific effects as random effects

involves independence assumptions which certainly need
consideration and may need some empirical check

STA 2201: Applied Statistics II February 14, 2014 27/30



... non-specific effects
I if estimates of effect of important explanatory variables are

essentially the same whether nonspecific effects are
ignored, or are treated as fixed constants, then random
effects model will be unlikely to give a different result

I it is important in applications to understand the
circumstances under which different methods give similar
or different conclusions

I in particular, if a more elaborate method gives an apparent
improvement in precision, what are the assumptions on
which that improvement is based, and are they
reasonable?
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... non-specific effects
I if there is an interaction between an explanatory variable

[e.g. treatment] and a nonspecific variable
I i.e. the effects of the explanatory variable change with

different levels of the nonspecific factor
I the first step should be to explain this interaction, for

example by transforming the scale on which the response
variable is measure or by introducing a new explanatory
variable

I example: two medical treatments compared at a number of
centres show different treatment effects, as measured by
an ratio of event rates

I possible explanation: the difference of the event rates might
be stable across centres

I possible explanation: the ratio depends on some
characteristic of the patient population, e.g. socio-economic
status

I an important special application of random-effect models
for interactions is in connection with overviews, that is,
assembling of information from different studies of
essentially the same effect
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