
Review for STA 2201: April, 2012

A. Log-linear models and categorical data analysis

Wei Lin found an outstanding online resource on this topic: Generalized Linear Models by
Germán Rodriguez (see especially Ch.5), and a link is posted on our web page. §5.1 is
relevant for HW3, and the more complex models in the later sections will not be covered on
the final test.

Also, with the help of Agresti (Categorical Data Analysis), §9.5, I finally managed to get on
top of the coal-miners problem from HW2.

Table 1: Set 11 from Cox & Snell (1981). Numbers of coalminers responding to breathlessness
and wheeze according to age group.

Breathlessness Yes No Total
Wheeze Yes No Yes No

20–24 9 7 95 1841 1952
25–29 23 9 105 1654 1791
30–34 54 19 177 1863 2113
35–39 121 48 257 2357 2783

Age 40–44 169 54 273 1778 2274
Group 45–49 269 88 324 1712 2393

50–54 404 117 245 1324 2090
55–59 406 152 225 967 1750
60–64 372 106 132 526 1136

Total 1827 600 1833 14022 18282

Recall that the problem was to assess whether or not the interaction between breathlessness
and wheeze changed with age. We can’t do this in a log linear model if age is treated as a
factor variable, because the model is saturated.

> hw4

count breath wheeze age

1 9 1 1 -4

2 7 1 0 -4

3 95 0 1 -4

4 1841 0 0 -4

5 23 1 1 -3

6 9 1 0 -3

7 105 0 1 -3

...
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> agresti3 = glm(count ~ breath*wheeze*factor(age),data=hw4,family = poisson)

> anova(agresti3)

Analysis of Deviance Table

Model: poisson, link: log

Response: count

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 35 25889.5

breath 1 11026.2 34 14863.3

wheeze 1 7037.5 33 7825.7

factor(age) 8 886.6 25 6939.1

breath:wheeze 1 4237.1 24 2701.9

breath:factor(age) 8 2342.4 16 359.5

wheeze:factor(age) 8 332.9 8 26.7

breath:wheeze:factor(age) 8 26.7 0 0.0

The biggest unsaturated model is breath*wheeze + breath*factor(age) + wheeze*factor(age),
which models an interaction between breath and wheeze, and an interaction between breath

and factor(age), and an interaction between wheeze and factor(age), but doesn’t get at
the question we are interested in.

Agresti suggests the following:

log µijk = (BW,AB,AW ) + zδI(i = j = 1),

where z = 1, 2, . . . , 9 is a linear function of age. This is shorthand for

log µijk = µ+ βi + ωj + (βω)ij + αk + (αβ)ik + (αω)jk + zδI(i = j = 1).

The additional term adds a component δ to µ111, 2δ to µ112, etc, and 9δ to µ119. The µ11k

term is the log-odds ratio for the kth table. Below we fit the models without and with this
term:

> agresti = glm(count ~ breath*wheeze + breath*factor(age) + factor(age)*wheeze, family = poisson, data = hw4)

> anova(agresti)

Analysis of Deviance Table

Model: poisson, link: log
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Response: count

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 35 25889.5

breath 1 11026.2 34 14863.3

wheeze 1 7037.5 33 7825.7

factor(age) 8 886.6 25 6939.1

breath:wheeze 1 4237.1 24 2701.9

breath:factor(age) 8 2342.4 16 359.5

wheeze:factor(age) 8 332.9 8 26.7

> rstandard(agresti, type="pearson")

1 2 3 4 5 6

0.7477297 -0.7477297 -0.7477297 0.7477297 2.1993530 -2.1993531

7 8 9 10 11 12

-2.1993491 2.1993491 2.0985325 -2.0985326 -2.0985324 2.0985324

13 14 15 16 17 18

1.7704822 -1.7704822 -1.7704822 1.7704822 1.1310498 -1.1310498

19 20 21 22 23 24

-1.1310498 1.1310498 -0.4220680 0.4220680 0.4220680 -0.4220680

25 26 27 28 29 30

0.8142649 -0.8142649 -0.8142649 0.8142649 -3.6491197 3.6491197

31 32 33 34 35 36

3.6491197 -3.6491197 -1.4428896 1.4428896 1.4428896 -1.4428896

The residual deviance is 26.7 on 8 degrees of freedom, suggesting the model doesn’t fit very
well. I added the Pearson residuals; you can see that they are identical for each set of four
observations, i.e. for each age, so the column of residuals could be added to the data table
(see next page).
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Table 2: Set 11 from Cox & Snell (1981). Numbers of coalminers responding to breathlessness
and wheeze according to age group.

Breathlessness Yes No Total
Wheeze Yes No Yes No Std. Pearson

Residual (1st cell)
20–24 9 7 95 1841 1952 0.75
25–29 23 9 105 1654 1791 2.20
30–34 54 19 177 1863 2113 2.10
35–39 121 48 257 2357 2783 1.77

Age 40–44 169 54 273 1778 2274 1.13
Group 45–49 269 88 324 1712 2393 -0.42

50–54 404 117 245 1324 2090 0.81
55–59 406 152 225 967 1750 -3.65
60–64 372 106 132 526 1136 -1.44

Total 1827 600 1833 14022 18282

We can see that the residuals seem to be decreasing with age, which Agresti uses to suggest
his linear model. I created an additional variable indic for the linear model, as rep(1:9,

each=4)*breath*wheeze:

> hw4

count breath wheeze age indic

1 9 1 1 -4 1

2 7 1 0 -4 0

3 95 0 1 -4 0

4 1841 0 0 -4 0

5 23 1 1 -3 2

6 9 1 0 -3 0

...

> agresti2 = glm(count ~ breath*wheeze + breath*factor(age) + factor(age)*wheeze

+ indic , family = poisson, data = hw4)

> anova(agresti2)

Analysis of Deviance Table

Model: poisson, link: log

Response: count

Terms added sequentially (first to last)
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Df Deviance Resid. Df Resid. Dev

NULL 35 25889.5

breath 1 11026.2 34 14863.3

wheeze 1 7037.5 33 7825.7

factor(age) 8 886.6 25 6939.1

indic 1 5956.1 24 982.9

breath:wheeze 1 6.6 23 976.3

breath:factor(age) 8 618.7 15 357.5

wheeze:factor(age) 8 350.7 7 6.8

> summary(agresti2)

...

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 7.51872 0.02328 322.990 < 2e-16 ***

breath -5.76300 0.27913 -20.646 < 2e-16 ***

wheeze -2.97769 0.10395 -28.644 < 2e-16 ***

factor(age)-3 -0.10885 0.03383 -3.217 0.00129 **

factor(age)-2 0.01041 0.03279 0.317 0.75089

factor(age)-1 0.24659 0.03101 7.953 1.82e-15 ***

factor(age)0 -0.03531 0.03308 -1.067 0.28575

factor(age)1 -0.06994 0.03330 -2.100 0.03571 *

factor(age)2 -0.33839 0.03568 -9.484 < 2e-16 ***

factor(age)3 -0.63138 0.03896 -16.205 < 2e-16 ***

factor(age)4 -1.26584 0.04863 -26.030 < 2e-16 ***

indic -0.13063 0.02949 -4.430 9.43e-06 ***

...

and we see that the linear coefficient for age is estimated to be −0.131, with an estimated
standard error of 0.029. The residual deviance is 6.80 on 7 degrees of freedom. The Pearson
residuals show less association with age, although there might be a suggestion of a nonlinear
effect as well. We could try

> agresti4 = glm(count ~ breath*wheeze + breath*factor(age) + factor(age)*wheeze

+ indic + I(indic^2) , family = poisson, data = hw4)

but the estimated coefficient for the quadratic term is only 0.005 with an estimated standard
error of 0.013.

This example is also analyzed in McCullagh & Nelder (Generalized Linear Models), but I
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have been unable to reproduce their results. I think Agresti may have had the same problem,
because he simply writes “McCullagh and Nelder (1989, Sec. 6.6) showed other analyses.”

Another approach to the question, used by many in HW2, is to choose one of breath or
wheeze as a response, and treat the other as a covariate, and fit a logistic regression. This
will tell us whether or not the effect of wheeze on breath changes with age, but seems a
little unsatisfactory in not treating the two responses symmetrically. With categorical data
cross-classified by several factors, it is not always clear which category or categories to use
as the response(s). Cox & Snell (Applied Statistics), Example W, consider cross-classified
data with 4 categories; they treat 3 of the categories as responses and one as an explanatory
variable. Venables & Ripley (Modern Applied Statistics with S), analyze the same data but
treating one category as a response and having three explanatory variables.

In the social sciences there is an enormous literature on cross-classified data, choosing re-
sponse variables, analysing dependencies, and so on; much of the work comes under the
general heading of “graphical models”, which doesn’t mean graphics, it means models where
graphs are used to understand complex dependencies. There will be a workshop on graphical
models at the Fields Institute, April 16-18.

B. Some Review Questions

1. Samples of the same material are sent to four laboratories for chemical analysis as part
of a study to determine whether laboratories give the same results. The results for
laboratories A–D, with the row means, are:

A 58.7 61.4 70.9 59.1 58.2 59.66
B 62.7 64.5 63.1 59.2 60.3 61.96
C 55.9 56.1 57.3 55.2 58.1 56.52
D 60.7 60.3 60.9 61.4 62.3 61.12

The summary and analysis of variance table are given below, partially completed.

> testlm2=lm(y~lab)

Warning message:

In model.matrix.default(mt, mf, contrasts) :

variable ’lab’ converted to a factor

> summary(testlm2)

Call:

lm(formula = y ~ lab)

Residuals:

Min 1Q Median 3Q Max

-2.760 -0.855 -0.320 1.150 2.540

Coefficients:
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Estimate Std. Error t value Pr(>|t|)

(Intercept) 59.6600 0.6556 91.007 < 2e-16 ***

labB ______ ______ 2.481 0.02460 *

labC -3.1400 0.9271 -3.387 0.00376 **

labD 1.4600 0.9271 1.575 0.13486

...

> anova(testlm2)

Analysis of Variance Table

Response: y

Df Sum Sq Mean Sq F value Pr(>F)

lab 3 85.926 _______ 13.329 0.0001282 ***

Residuals __ 34.380 _______

Signif. codes: 0 *** 0.001 ** 0.01 * 0.05 . 0.1 1

(a) Complete the missing entries, indicated by ______ lines.

(b) Write out the linear model used to fit this data, explaining all notation and giving
needed assumptions.

(c) Explain how to assess the consistency of the data with the null hypothesis that
there is no difference among the laboratories.

2. Assume the following model for a one-way analysis of variance:

yij = µ+ αi + εij; j = 1, . . . , ni; i = 1, . . . , k, (1)

and assume as usual that the εij are independent with mean 0, constant variance σ2.

(a) Show that the log-likelihood function for θ = (µ, α1, . . . , αk, σ
2) depends on the

sample y through the sufficient statistics (ȳ1., . . . , ȳk.,
∑

ij(yij − ȳi.)
2), and thus

the parameterization of the model give in (1) has one redundant component.

(b) Show that under the restriction α1 = 0, the maximum likelihood estimate of θ is

θ̂(1) = (ȳ1., 0, ȳ2. − ȳ1., . . . , ȳk. − ȳ1.),

and that under the restriction
∑
niαi = 0, the maximum likelihood estimate of θ

is
θ̂(2) = (ȳ.., ȳ1. − ȳ.., . . . , ȳk. − ȳ..),

where ȳi. = (1/ni)
∑

j yij, and ȳ.. = (1/N)
∑

ij yij, N =
∑

i ni.

(c) Show that

σ̃2 =

∑
(yij − ȳi.)2

N −K
is an unbiased estimate of σ2.

(d) Give an expression for the variance of ȳi. − ȳi′., and argue that if we want to
minimize this variance for all pairs i, i′, for fixed n = mk, say, that we should
choose all ni equal (to m).
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3. Given a sample consisting of 15 hospitals in the Toronto area and 15 in the Montreal
area, each with 10 patients that potentially could have heart attacks in 2009, three
treatments (A, B, C) were randomly assigned to this sample and the number of pa-
tients encountering heart attacks were observed. Each treatment group consists of 10
hospitals. Also included as a potential explanatory variable is the average age of the
patients in each of the three hospitals. It is of interest to test whether the treatment
effect varies in the same pattern for hospitals in Toronto and Montreal. Consider a
Binomial model with the logistic link function.

(a) Write down the full model and the reduced model involved in the above test,
explicitly specifying the model components, predictors and parameters using suit-
able dummy variables. Then express the null hypothesis in terms of regression
parameters.

(b) The residual deviances of the full model and the reduced models are estimated
as 57 and 75, respectively The average numbers of heart attack patients in the
hospitals within each combination of treatment and area are also provided below.
Describe how you will perform this test, i.e., specifying the value of the test
statistic and its distribution under the null hypothesis.

Trt. A Trt. B Trt. C
Toronto 3.2 2.8 1.9

Montreal 4.5 3.3 0

4. Questions from Davison Ch. 8: Problems 8.6, 8.10, 8.13 (a,b,c)

5. Questions from Davison Ch. 9: Problems 9.3 (c), 9.6

6. Questions from Davison Ch. 10: Exercises 10.3.6, 10.4.3, 10.5.3, 10.6.2, 10.7.1

7. Questions from Davison Ch. 10: Problems 10.2, 10.8, 10.9, 10.12
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