The next weeks

§10.6 Overdispersion and quasi-likelihood, GEEs
§10.7 Semiparametric models
Generalized additive models and lasso
Finishing pieces, + review

Homework 3: due April 2, 5 pm

Final Test: April 17, 1 - 3 pm – posted by Monday, March 19

STA 2201S: Mar 16, 2012 1/31

Estimating functions and quasi-likelihood

- ▶ suppose we assume only that $E(Y_j) = \mu_j(\beta)$, $Var(Y_j) = \phi a_j V(\mu_j)$, as in most glm's
- and we use the glm estimates of β , defined by the score equation

$$\sum_{j=1}^{n} \frac{y_{j} - \mu_{j}}{a_{j} V(\mu_{j})} \frac{x_{jr}}{g'(\mu_{j})} = 0 \quad (*)$$

- ▶ n.b. Davison calls LHS $g(Y; \beta)$, different g
- using only (*), we have

$$g(Y, \overline{P}) = 0$$

$$E\{g(Y;\beta)\}=0;$$
 $E\{-\frac{\partial g(Y;\beta)}{\partial \beta}\}=Var\{g(Y;\beta)\}$

▶ thus g has two properties in common with the the score function from a log-likelihood

STA 2201S: Mar 16, 2012 2/31

estimating functions and quasi-likelihood

$$g(Y;\beta) = \sum_{j=1}^{n} \frac{Y_{j} - \mu_{j}}{a_{j} V(\mu_{j})} \frac{x_{jr}}{g'(\mu_{j})} = 0$$

$$Q(\beta; Y) = \sum_{j=1}^{n} \int_{Y_{j}}^{\mu_{j}} \frac{Y_{j} - \lambda_{j}}{\phi a_{j} V(\lambda_{j})} du,$$

•
$$w_i = 1/\{g'(\mu_i)^2 \phi a_i V(\mu_i)\}$$
 as usual, have assumed

►
$$w_j = 1/\{g'(\mu_j)^2 \phi a_j V(\mu_j)\}$$
 as usual, have assumed
► Quasi-likelihood estimator $\tilde{\beta} \sim N(\beta, X^T WX)$, where $W = diag(w_1, y^{-1})d_{\alpha}$

• inflate estimated standard errors for
$$\tilde{\beta}_j$$
 by $\hat{\phi}^{1/2}$

... estimating functions and quasi-likelihood

```
> toxo.glm1 = glm(cbind(r, m-r) ~ rain + I(rain^2) + I(rain^3),
family = quasibinomial)
> summary(toxo.glm1)
. . .
Coefficients:
            Estimate Std. Error t value Pr(>|t|)
(Intercept) -2.902e+02 1.215e+02 -2.388 0.0234 *
rain
     4.500e-01 1.876e-01 2.398 0.0229 *
I(rain^2) -2.311e-04 9.616e-05 -2.404 0.0226 *
I(rain^3) 3.932e-08 1.635e-08 2.405 0.0225 *
 Nul dex. resid der. 8=1.94
                                         Z & N(B)
> (74.212 - 62.635)/3/1.94
[11 1.989175
> pf(.Last.value, 3, 30, lower.tail = F)
[11 0.1368155
```

STA 2201S: Mar 16, 2012 4/31

... estimating functions and quasi-likelihood

• even if $V(\mu)$ is incorrectly specified, $\tilde{\beta}$ is still consistent

$$a.Var(\tilde{\beta}) = (X^T W X)^{-1} Var\{g(Y; \beta)\}(X^T W X)^{-1}$$

• often is well approximated by $(X^TWX)^{-1}$ in any case

myht = 1

- when extended to dependent data, called generalized estimating equation method
- reference: Liang & Zeger (1986, Biometrika)

sandurch est of variance

STA 2201S: Mar 16, 2012 5/31

Example: estimation of spatial intensity (Yongtao Guan, Mar. 15)

- Poisson process on spatial area W, indexed by spatial locations $s = (l_0 r_0) (l_0 t_0)$
- ▶ N(s) counts "events" at location s, $N(s) \sim Pois\{\lambda(s)\}$
- generalized linear model $\lambda(s) = \exp\{Z(s)^T \beta\}$
- introduce correlation by assuming two points s₁ and s₂ have a joint intensity function
- $\lambda_2(s_1, s_2) = \lambda(s_1)\lambda(s_2)g(||s_1 s_2||)$
- estimation using mean $\lambda(\cdot)$ and variance $\lambda_2(\cdot,\cdot)$ only as in GEE

STA 2201S: Mar 16, 2012 6/31

Generalized estimating equations $\phi \lor (\mu;) \land \varphi$

$$Y_j = (Y_{j1}, \dots, Y_{jn_j}); \quad E(Y_j) = \mu_j; \quad \text{var}(X_j) = \bigvee (\mu_j) \vee ($$

- ▶ needs some specification of $V(\cdot; \cdot)$ called "working covariance matrix"
- gee in library(gee) offers several choices: independent, exchangeable, AR(p), etc.
- estimate of β is consistent, even if $V(\cdot; \cdot)$ is mis-specified
- ▶ but estimates of $Var(\tilde{\beta})$ will be incorrect if $\sqrt{\cdot}$; ι
- there is no quasi-likelihood that corresponds to this more general model

7/31 STA 2201S: Mar 16, 2012

Dependence through random effects

Example: longitudinal data

- $CL 9 Y \in \mathbb{R}$
- $(Y_j) = (Y_{j1}, \dots, Y_{jn_j})$ vector of observations on jth individual
- recall random effects model (normal theory):

$$Y_j = X_j \beta + Z_j b_j + \epsilon_j; \quad b_j \sim N(0, \sigma^2 \Omega_b), \epsilon_j \sim N(0, \sigma^2 \Omega_j)$$

marginal distribution:

$$Y_j \sim N(X_j \beta, \sigma^2 \Upsilon_j^{-1})$$

▶ sample of *n* i.i.d. such vectors leads to

$$Y \sim N(X\beta, \sigma^2 \Upsilon^{-1}), \quad \Upsilon^{-1} = (\Omega + Z\tilde{\Omega}_b Z^T)$$

STA 2201S: Mar 16, 2012 8/31

Generalized linear mixed models

lacksquare simplify as in last slide to canonical link $(heta_j = \eta_j)$

.

$$f(y_j \mid \theta_j, \phi) = \exp\{\frac{y_j\theta_j - b(\theta_j)}{\phi a_j} + c(y_j; \phi a_j)\}$$

random effects

$$\theta_j = \underbrace{x_j^T \beta}_{j} + \underbrace{z_j^T b}_{j}, \quad b \sim N(0, \Omega_b)$$

likelihood

$$L(\beta, \phi; y) = \prod_{j=1}^{n} \int f(y_j \mid \beta, b, \phi) f(b; \Omega_b) db$$

STA 2201S: Mar 16, 2012 9/31

... generalized linear mixed models

likelihood

$$L(\beta, \phi; y) = \prod_{j=1}^{n} \int f(y_{j} | \beta, \underline{b}, \phi) f(b; \Omega_{b}) d\underline{b}$$

- solutions proposed include
 - numerical integration, e.g. by quadrature
 - integration by MCMC
 - penalized quasi-likelihood use Laplace approximation to the integral
- reference: MASS library and book (§10.4):
 glmmNQ, GLMMGibbs, glmmPQL, all in library (MASS)
 glmer in library (lme4)
- see also Faraway (Extending the Linear Model with R),
 Ch. 10

STA 2201S: Mar 16, 2012 10/31

Semiparametric Regression §10.7

▶ model $y_j = g(x_j) + \epsilon_j$, j = 1, ..., n x_j scalar

▶ mean function $g(\cdot)$ assumed to be "smooth"

$$E(y|x) = g(x)$$

introduce a kernel function w(u) and define a set of weights

$$w_j = \frac{1}{h} w \left(\frac{x_j - x_k}{h} \right)$$
) $w(u) = \frac{w}{h} \varphi(u)$

• estimate of g(x):

$$\hat{g}(\mathbf{x}) = \frac{\sum_{j=1}^{n} w_j y_j}{\sum_{j=1}^{n} w_j} = \frac{e^{-\sum_{j=1}^{n} w_j y_j}}{\sqrt{\lambda T}}$$

Nadaraya-Watson estimator (10.40) – local averaging

STA 2201S: Mar 16, 2012

... kernel smoothing

better estimates can be obtained using total egression at point *x*

$$\begin{pmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{pmatrix} = \begin{pmatrix} 1 & (x_1 - x_0) & \cdots & (x_1 - x_0)^k \\ \vdots & \vdots & & \vdots \\ 1 & (x_n - x_0) & \cdots & (x_n - x_0)^k \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_k \end{pmatrix} + \begin{pmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_n \end{pmatrix},$$

$$\hat{\beta} = (X^T W X)^{-1} X^T W y \qquad W = d \log \left(W_j \right)$$

$$\hat{g}(x_0) = \hat{\beta}_0 \qquad W_j = \frac{1}{L} W \left(\frac{\partial L_0 - \chi_j}{\partial x_0} \right)$$

• usually obtain estimates $\hat{g}(x_i), j = 1, \dots, n$

STA 2201S: Mar 16, 2012 12/31

... kernel smoothing

- odd-order polynomials work better than even; usually local linear fits are used
- kernel function is often a Gaussian density, or the tricube function (10.37)
- choice of bandwidth controls smoothness of function
- kernel estimators are biased
- larger bandwidth = more smoothing increases bias, decreases variance
- some smoothers allows variable bandwidth depending on density of observations near x₀
- ksmooth computes local averages; loess computes local linear regression (robustified)

$$E\hat{g}(\chi) \neq g(\chi_0)$$

STA 2201S: Mar 16, 2012 13/31

Example: weighted average

```
ksmooth(x,y,kernel=c("box","normal"),bandwidth=0.5,
         range.x=range(x),
         n.points=max(100, length(x)), x.points)
> eps < -rnorm(100, 0, 1/3)
> x < -runif(100)
> \sin 4 < - function(x) \{ \sin(4*x) \}
> v < -\sin 4(x) + \exp s
> plot(sin4,0,1,type="l",ylim=c(-1.0,1.5),xlim=c(0,1))
> points(x,v)
> lines(ksmooth(x,y,"box",bandwidth=.2),col="blue")
> lines(ksmooth(x,y,"normal",bandwidth=.2),col="green")
```

STA 2201S: Mar 16, 2012

... Example

- > plot(sin4,0,1,type="l",ylim=c(-1.0,1.5),xlim=c(0,1))
- > lines(ksmooth(x,y,"normal",bandwidth=.2),col="green")
- > lines(ksmooth(x,y,"normal",bandwidth=0.4),col="blue")
- > lines(ksmooth(x,y,"normal",bandwidth=0.6),col="red")

STA 2201S: Mar 16, 2012 x 16/31

Fitting in R

- scatter.smooth fits a loess curve to a scatter plot
- ▶ loess takes a family argument: family = gaussian gives weighted least squares using K_{λ} as weights and family=symmetric gives a robust version using Tukey's biweight
- supsmu implements "Friedman's super smoother": a running lines smoother with elaborate adaptive choice of bandwidth
- ► Library KernSmooth has locpoly for local polynomial fits, and by setting degree = 0 gives a kernel smooth
- as usual more smoothing means larger bias, smaller

variance¹⁾

W(4)=e /50

STA 2201S: Mar 16, 2012 17/31

Example: local linear smoothing $M, h \leq$

```
> plot(sin4,0,1,type="l",ylim=c(-1,1.5),xlim=c(0,1), xla
> lo1 = loess(y ~ x, degree = 1, span =
> attributes(lo1)
$names
                              "residuals"
 [1] "n"
                "fitted"
 [7] "two.delta" "trace.hat" "divisor"
[13] "terms"
                              "×"
             "xnames"
             (ord = ?)

ord = order(lo1$x)
$class
[1] "loess"
  lines (lo1$x[ord],lo1$fitted[ord],col="red")
  102 = 10ess(v^x, degree=1, span=0.4)
> 103 = loess(y^x, degree=2, span=0.4)
> lines(lo1$x[ord],lo2$fitted[ord],col="green")
```

STA 2201S: Mar 16, 2012

> lines(lo1\$x[ord],lo3\$fitted[ord],col="purple")


```
scatter.smooth {stats}
                                                                      R Docum
              Scatter Plot with Smooth Curve Fitted by Loess
```

Description

Plot and add a smooth curve computed by loess to a scatter plot.

family = c("symmetric", "gaussian"), evaluation = 50, ...)

ylab

Usage scatter.smooth(x, y = NULL, span = 2/3, degree = 1,

```
family = c("symmetric", "gaussian"),
xlab = NULL, ylab = NULL,
ylim = range(y, prediction$y, na.rm = TRUE),
evaluation = 50, ...)
```

loess.smooth(x, y, span = 2/3, degree = 1,

Arguments the x and y arguments provide the x and y coordinates for the plot. Any reasonable way of x,y

span

degree degree of local polynomial used.

family

label for y axis.

the coordinates is acceptable. See the function xy.coords for details. smoothness parameter for loess.

if "gaussian" fitting is by least-squares, and if family="symmetric" a re-descending M is used. xlab label for x axis.

supsmu {stats} R Docum

Friedman's SuperSmoother

```
Description
```

Smooth the (x, y) values by Friedman's 'super smoother'.

```
Usage
```

```
supsmu(x, y, wt, span = "cv", periodic = FALSE, bass = 0)
```

Arguments

```
x values for smoothing
```

y values for smoothing

wt case weights, by default all equal

span the fraction of the observations in the span of the running lines smoother, or "cv" to choose the

leave-one-out cross-validation.

periodic if TRUE, the x values are assumed to be in [0, 1] and of period 1.

bass controls the smoothness of the fitted curve. Values of up to 10 indicate increasing smoothness

Details

used.

supsmu is a running lines smoother which chooses between three spans for the lines. The running lines sn are symmetric, with k/2 data points each side of the predicted point, and values of k as 0.5 * n, 0.2 * 0.05 * n, where n is the number of data points. If span is specified, a single smoother with span span *

Inference from smooth functions

$$\hat{\beta} = (X^T W X)^{-1} X^T W y \quad (\checkmark_{\mathbf{0}})$$

$$W = \operatorname{diag}(W_1, \dots, W_n) \qquad W_j = \frac{1}{h} W \left(\frac{\gamma_{(5,1)}}{h} \right)$$

$$\hat{g}(x_0) = \sum_{j=1}^n S(x_0; x_j, h) y_j = \hat{\beta}_0 \text{ use } \hat{\beta}_0 \text{ from right}$$

►
$$S(x_0; x_1, h), ..., S(x_0; x_n, h)$$
 first row of "hat" matrix $(X^T W X)^{-1} X^T W$

$$\blacktriangleright E\{\hat{g}(x_0)\} = \sum_{j=1}^n \underline{S(x_0; x_j, h)} g(x_j) \neq g(\mathcal{X}_{\delta})$$

$$\operatorname{var}\{\hat{g}(x_0)\} = \sigma^2 \sum_{j=1}^n S(x_0; x_j, h)^2$$

$$\operatorname{similarly} \hat{g} = (\hat{g}(x_1), \dots, \hat{g}(x_n)) = S_h y$$

$$\nu_1 = \operatorname{tr}(S_h), \ \nu_2 = \operatorname{tr}(S_h^T S_h) \text{ suggested as}$$

 $= S(x_{ij}x_{jh})$

$\Sigma(\hat{y}_j - \hat{y}_j)^3 \leftarrow$ Figure 10.16 Smooth

analysis of earthquake data. Upper left: local linear regression of magnitude on log intensity just before quake (solid). with 0.95 pointwise confidence bands (dots). Upper right; generalized cross-validation criterion GCV(h) as a function of bandwidth h. Lower left: relation between degrees of freedom v1 (solid), v2 (dots), and h. Lower right: significance traces for test of no relation between magnitude and log intensity, based on chi-squared approximation (dots) and saddlepoint approximation (solid). The horizontal line shows the conventional 0.05 significance level.

Extension

- original model $y_i = g(x_i) + \epsilon_i$
- extend to $y_i \sim f(\cdot; \beta, x_i)$

$$\max_{\beta} \sum \log f(y_j; \beta, x_j) \longrightarrow \max_{\beta} \sum \frac{1}{h} w\left(\frac{x_j - x_0}{h}\right) \log f(y_j; \beta, x_j)$$

- ▶ local likelihood fitting
- ► more than 1 covariate $g(x_{ij}, x_{ij})$ $E(Y_i) = g_1(x_{1i}) + g_2(x_{2i}) + \cdots + g_p(x_{pi})$
- or

like of hand

STA 2201S: Mar 16, 2012

Example 10.32

10 · Nonlinear Regression Models

Figure 10.17 Local fit to the toxoplasmosis dat The left panel shows fitt probabilities $\widehat{\pi}(x)$, with the fit of local linear logistic model with h = 400 (solid) and 0.95 pointwise confidence bands (dots). Also show is the local linear fit with h = 300 (dashes). The right panel shows the loc quadratic fit with h = 40and its 0.95 confidence band. Note the increased variability due to the quadratic fit, and its stronger curvature at the boundaries.

STA 2201S: Mar 16, 2012 27/31

Flexible modelling using basis expansions

 $(\S10.7.2)$

$$y_j = g(x_j) + \epsilon_j$$

Flexible linear modelling

$$g(x) = \sum_{m=1}^{M} \beta_m h_m(x)$$

- ▶ This is called a linear basis expansion, and h_m is the mth basis function
- For example if X is one-dimensional: $g(x) = \beta_0 + \beta_1 x + \beta_2 x^2$, or $g(x) = \beta_0 + \beta_1 \sin(x) + \beta_2 \cos(x)$, etc.
- ▶ Simple linear regression has $h_1(x) = 1$, $h_2(x) = x$

STA 2201S: Mar 16, 2012 28/31

Piecewise polynomials

- ▶ piecewise constant basis functions $h_1(x) = I(x < \xi_1), \quad h_2(x) = I(\xi_1 \le x < \xi_2), h_3(x) = I(\xi_2 \le x)$
- fitting by local averaging
- ▶ piecewise linear basis functions, with constraints $h_1(x) = 1$, $h_2(x) = x$ $h_3(x) = (x - \xi_1)_+$, $h_4(x) = (x - \xi_2)_+$
- windows defined by knots ξ_1, ξ_2, \dots
- ▶ piecewise cubic basis functions $h_1(x) = 1, h_2(x) = x, h_3(x) = x^2, h_4(x) = x^3$
- continuity $h_5(x) = (x \xi_1)^3_+, h_6(x) = (x \xi_2)^3_+$
- continuous function, continuous first and second
 derivatives

STA 2201S: Mar 16, 2012 29/31

FIGURE 5.1. The top left panel shows a piecewise constant function fit to some artificial data. The broken vertical lines indicate the positions of the two knots ξ_1 and ξ_2 . The blue curve represents the true function, from which the data were

Piecewise Cubic Polynomials

FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of continuity.