The next weeks

March 9  §10.6 Overdispersion and quasi-likelihood, GEEs
March 16 §10.7 Semiparametric models

March 23 Generalized additive models and lasso

March 30 Finishing pieces, + review
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Estimating functions and quasi-likelihood

» suppose we assume only that
E(Y)) = w(B), Var(Y)) : (1)), as in most gim’s
» and we use the glm estimates of 3, defined by the score

equation
Zn: Yi — K X -0 (*)
= Vi) ()
» n.b. Davison calls LHS g(Y; 3), different g

» using only (*), we have ? (\// E) — 0

og(Y;
Elgvimt =0 E-2LT0) varig(v: )
» thus g has two properties in common with the the score
function from a log-likelihood
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.. estimating functions and qua?islikelihood
E()=

R O
Q(Y;,B): @le -0

£ a V() )
»/ (Y; ) is the g-derivative of

Z/ ¢a, d(i, az/ag

w; = 1/{9'(1;)?6a;V(1;)} as usual, have assumed

v

v

) <
Quasi-likelihood estimator 3 ~ N(B,Q(TWX))Nhere W(: )

v

inflate estimated standard errors for Bj by ¢'/2

| \a\’\L 1 Gy
e

st 2z01s: mapis, 2z -t@ St 10 compare nested models
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... estimating functions and quasi-likelihood

> toxo.glml = glm(cbind(r,m-r) ~ rain + I(rain”"2) + I(rain”3),
family = quasibinomial)

> summary (toxo.glml) l/ ?é l
Coefficients:

Estimate Std. Error t value Pr(>]|t])
(Intercept) -2.902e+02 1.215e+02 -2.388 0.0234 «

rain 4.500e-01 1.876e-01 2.398 0.0229 =
I(rain~2) -2.311e-04 9.616e-05 -2.404 0.0226 =
I(rain”3) 3.932e-08 1.635e-08 2.405 0.0225

Muit&u/ VeSid dons . ¢~|7L+

> (74.212 - 62.635)/3/1.94 :
[1] 1.989175 \\\%)
> pf(.Last.value, 3, 30, lower.tail = F) ~ :tz

[1] 0.1368155 %

\
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... estimating functions and quasi-likelihood

» even if V(u) is incorrectly specified, 3 is still consistent
) "
: tlow E-5%)
a.Var(8) = (XTWX)~"Var{g(Y; B)HXTWX)~! &~ ﬁ[
often is well approximated by (X” WX)~" in any case nl Wt

=L

v

v

when extended to dependent data, called generalized
estimating equation method

reference: Liang & Zeger (1986, Biometrika)

e (/ vz o
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Example: estimation of spatial intensity (Yongtao

Guan,

>

Mar. 15)

Poisson process on spatial area W, indexed by spatial

locations s —(’o "‘ﬁ)g L_—t )

Nds) counts “events” at location s, N(s) ~ Pois{\(s)}
(s,S+ds) =

generalized linear model \(s) = exp{Z(s)7 3} 5\,«4 g
T ol

introduce correlation by assuming two points s; and sp .
have a joint intensity function [IJ

A2(81, 82) = A(s1)A(S2)9(lIs1 — s2l|)

estimation using mean A(-) and variance Xx(-,-) only as in
GEE
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Generalized estimating equations #V (i, )«
>¢\Y1_(Y]17"' an) E(Y)) =p; var(Y) = %V(}'\)}

LRNEYEE I g .
» estim tlng equation for 3: V\J X ’\J WJA)(

((‘anb ni Cﬁ' i »
. — ) V(s 0) g — ) = O
\u/\\() C ;(850 K L= 4 - QLM

il —(v
» multivariate version of quasi-likelihood equation &~ )]:-
» needs some specification of V(-;-) called “working -
covariance matrix”
» gee in library(gee) offers several choices:
independent, exchangeable, AR(p), etc.
9(_ » estimate of 3 is consistent, even if V(-; ) is mis-specified
> but estimates of Var(J3) will be incorrectif \/ ;¢ "
» there is no quasiMood that corresponds to this more
general model

STA 2201S: Mar 16, 2012 7131


Nancy

Nancy


Dependence through random effects

» Example: longitudinal data OL 9 \/J é R
> (YL~ (Yii, ..., Yj) vector of observations on jth individual
» recall random effects model (normal theory):

Y, = X8+ Zbj+¢ji b~ N(0,0°Q), ¢ ~ N(O, o))

ST ,\¥ o

» marginal distribution:

Yj ~ N(Xi8,0%7; )

» sample of ni.i.d. such vectors leads to
Y ~ N(XB,02T™Y), T 1=(Q+20,Z27)
> Q=dag, .. 0, ). S =diag(s,,. o).

> T1—diag({v-'} "')“ﬂ\")
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Generalized linear mixed models

» simplify as in last slide to canonical link (6; = 7;)

| 4
Yt — b(6;)

sy +eUoa))

f(y; | 0), ¢) = exp{
» random effects

0j=x'B+2"b, b~ NO,Q)

> likelihood ' /%/

L(3.6:9) = 1] [ 101 5.b.0)1(b: )b
j=1
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. generalized linear mixed models

> likelihood (—QSIW\T | 053
L(B.61y) = H/fcmﬂ,,, )#(b; )ab,

» doesn’t simplify unless f(-) is normaI/T ‘ﬁ ‘-&m, ‘&)k, >

» solutions proposed include

» numerical integration, e.g. by quadrature ~‘/
» integration by MCMC CCDMW{' Q7

» penalized quasi-likElihood — use Laplace approximation to
the integral
» reference: MASS library and book (§10.4):
glmmNQ, GLMMGibbs, glmmPQL, &ll in library (MZ—\SS)
@n Tibrary (1me4)
» see also Faraway (Extending the Linear Model with R),
Ch. 10

STA 2201S: Mar 16, 2012 10/31


Nancy


Semiparametric Regression §10.7 9

» model y; = 9g(x;)) +¢, j=1,...,n Xx;scalar

>

I,

v

mean function g(-) assumed to be “smooth”

G(%hﬁ T(x)

introduce a kernel function w(u) and define a set of

v

weights
1
W,_hw(/h)%> I W(u)*%ﬂu)
» estimate of g(): @‘ LU e
a9(x) = Lo ) Vro

S W

Nadaraya-Watson estimator (10.40) — local averagmg

(4 owLe) A= 1wel®) eien
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point x E’wl}\
.

g 7
9
(i;) (l (x; —x0) --- (x; —xp)¥ g{f :
Tl=1: : : L[]
: 1 (xp, —xg) --- (x4 _xn);-) : . 6_
yn B £
>
o e )
>

| .
Ol

» usually obtain estimates g(x;),j=1,...,n
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... kernel smoothing

>

odd-order polynomials work better than even; usually local
linear fits are used

kernel function is often a Gaussian density, or the tricube
function (10.37) &

choice of bandwidth controls smoothness of function
kernel estimators are biased

larger bandwidth = more smoothing — increases bias,
decreases variance

some smoothers allows variable bandwidth depending on
density of observations near xg

ksmooth computes local averages; 1oess computes local
linear regression (robustified)

E5(x) £ gLo)
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Example: weighted average

ksmooth (x,y, kernel=c ("box", "normal") ,bandwidth=0.5,
range.x=range (x),
n.points=max (100, length(x)), x.points)

eps<-rnorm(100,0,1/3)

x<-runif (100)

sin4 <- function (x) {sin(4+*x)}

y<-sind (x) teps

plot (sin4,0,1,type="1",ylim=c(-1.0,1.5y7x1lim=c(0,1))
points (x,Vy)

lines (ksmooth (x,y,"
lines (ksmooth (x,

3L

ox",bandwidth=.2),col="blue")
"normal",bandwidth=.2), col="green")

vV V.V V V V VYV
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... Example

plot(sin4,0,1,type="1",ylim=c(-1.0,1.5),x1lim=c(0,1))
lines (ksmooth (x,y, "normal",bandwidth=.2),col="green")
lines (ksmooth(x,y, "normal",bandwidth=0.4),col="blue")
lines (ksmooth(x,y, "normal", bandwidth=0.6),col="red")

vV V V V

©w

1.0

sin4 (x)
0.5

0.0

-0.5
1

-1.0

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0
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Fitting in R
» scatter.smooth fits a loess curve to a scatter plot

» loess takesa family argument: family = q{
gives weighted least squares using K as weights and
family=symmetric gives a robust version using Tukey's
biweight

» supsmu implements “Friedman’s super smoother”: a
running lines smoother with elaborate adaptive choice of
bandwidth

» Library KernSmooth has locpoly for local polynomial
fits, and by setting degree = 0 gives a kernel smooth

» as usual more smoothing means Iargé(r bias?jsmaller
¢ variance
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> plot(sin4,0,1,type="1",ylim=c(-1,1.5)}xlim=c(0,1), xla
> 1lol = loess(y =~ x, degree = 1, span = &

> attributes (lol)

Snames & |
[l] lln" "fitted" "residualsll "enp" "S"
[7] "two.delta" "trace.hat" "divisor" "pars\ "kd
[13] "termsll "XnameS" "X" "y" "we

$class ( O(A — L ) Yuni f/D] ])
[1] "loess"
brd < OrJCf'(|01.$JL)
>lol$x ord],lolS$fitted[ord], col="red")
> loess (y™"x, degree=1l, span=0.4)

[

(
> lo3 = loess(y x, degree=2, span=0.4)
> lines (lol$x[ord],lo2$fitted[ord],col="green")
> lines (lol$x[ord],lo3sfitted[ord],col="purple")
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sin4 (x)

0.0 0.5 1.0 1.5

-0.5

-1.0




scatter.smooth {stats} R Docun
Scatter Plot with Smooth Curve Fitted by Loess
Description
Plot and add a smooth curve computed by loess to a scatter plot.
Usage
scatter.smooth(x, y = NULL, span = 2/3, degree = 1,
family = ¢f"symmetric”, "gaussian"),
xlab = NULL, ylab = NULL,
ylim = range(y, prediction$y, na.rm = TRUE),

evaluation = 50, ...)

loess.smooth({x, y, span = 2/3, degree = 1,
family = c{"symmetric", "gaussian"), evaluation = 50, ...)

Arguments

X,y the x and y arguments provide the x and y coordinates for the plot. Any reasonable way of
the coordinates is acceptable. See the function xy.coords for details.

span smoothness parameter for loess.

degree degree of local polynomial used.

family if "gaussian® fitting is by least-squares, and if family="symmetric" a re-descending M ¢
is used.

xlab label for x axis.

ylab label for y axis.
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supsmu {stats} R Docum
Friedman's SuperSmoother
Description

Smooth the (x, y) values by Friedman's ‘super smoother’.

Usage

supsma(x, ¥, wt, span = "gv", periodic = FALSE, bass = 0)

Arguments

x x values for smoothing

Y y values for smoothing

wt case weights, by default all equal

span the fraction of the observations in the span of the running lines smoother, or "ev" to choose th

leave-one-out cross-validation.
periodic if TRUE, the x values are assumed to be in (o, 1] and of period 1.
bass controls the smoothness of the fitted curve. Values of up to 10 indicate increasing smoothness.

Details

supsmu i8 a running lines smoother which chooses between three spans for the lines. The running lines sr
are symmetric, with k/2 data points each side of the predicted point, and values of k as 0.5 * n,0.2 *
0.05 * n,where n is the number of data points. If span is specified, a single smoother with span span -
used.



supsmu(x, y)$y

1.0

0.5

0.0

-0.5
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Inference from smooth functions
> B=(XTWX)" T XT Wy (Yﬁ “
- =~ 9(;
> W=diag(w, | .. (,J ) \A{) - ( )

> (%) = X7 S(xo; x,,h)ypg use g, {VW rLZ//\

—_— — T
» S(xo; X1, h), ..., S(Xo; Xn, h) first row of “hat” matrix
(XTWX)*1XTW

> E{9(x0)} = Sy S(xo0: Xj, Mg(x) g(ota)
> var{g(xo)} = o® > Ly S(x0; X}, h)? S:k = nyn
Pf larl .., 0 S +
% Xsmaryg (Q( 1),---,9(Xn) ): hy SLJ - S(d")ﬂo/{‘)

v 29 -
> = tr(Sh) 1/2 ftr(S Sp) suggested as H—rH =T
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Figure 10.16 Smooth
analysis of earthquake
data. Upper left: local
linear regression of
magnitude on log intensity
just before quake (solid),
with 0.95 pointwise
confidence bands (dots).
Upper right: generalized
cross-validation criterion
GCV(h) as a function of
bandwidth i. Lower left
relation between degrees
of freedom vy (solid), vy
(dots), and h. Lower right:
significance traces for test
of ne relation between
magnitude and log
intensity, based on
chi-squared
approximation (dots) and
saddlepoint
approximation (solid).
The horizontal line shows
the conventional 0.05
significance level.
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Extension
» original model y; = g(x;) + ¢; e— a_%\ L_ S

» extend to y; ~ f(; 5, X)) 2/(,\,\ Cjt’ /v\

>

. 1 (X —X
mnglogf(}q,B,)q)ngxzhw< - )Iogf(y/;ﬂ,xj)

}g» local likelihood fittinggF——  — — |° C“«‘
0}}\}5 » more than 1 covariate %(34\;, ’)(\,J‘) “Lu(l lao

> E(Y)) = 91(x1)) + g2(Xe)) + - -+ + Gp(Xp))

> or

cam & AEY) <
\bﬁ Jﬂos\{

22222
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Example 10.32

528 10 - Nonlinear Regression Models

Figure 10.17  Local fit
to the toxoplasmosis dat;
The left panel shows fitt
probabilities 7 (x), with
the fit of local linear
logistic model with

h = 400 (solid) and 0.95
pointwise confidence
bands (dots). Also showr
is the local linear fit witk
h = 300 (dashes). The
right panel shows the loc
quadratic fit with h = 40
and its 0.95 confidence
band. Note the increased
1600 1800 2000 2200 2400 1600 1800 2000 2200 2400  Veriabilitydue tothe
quadratic fit, and its

Rainfall (mm) Rainfall (mm}) stronger curvature at the
boundaries.

1.0
1.0

Proportion positive

Proportion positive
00 02 04 06 08

00 02 04 06 08
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Flexible modelling using basis expansions
(810.7.2)
>y =9(%) +¢

v

Flexible linear modelling
9(x) = z%ﬂﬂmhm(x)

This is called a linear basis expansion, and hy, is the mth
basis function

For example if X is one-dimensional:

9(x) = Bo + Bix + B2X?, or

9(x) = Bo + B4 sin(x) + B2 cos(x), etc.

Simple linear regression has hy(x) =1, ha(x) = x

v

v

v
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Piecewise polynomials

>

>

piecewise constant basis functions

hi(x) = I(x < &), hao(x)=1(& < x < &),
hs(x) = I(&2 < x)

fitting by local averaging

piecewise linear basis functions , with constraints
hi(x) =1, ho(x) = x

ha(x) = (x = &)y, ha(x) = (x — &)+
windows defined by knots &1, &o, . ..

piecewise cubic basis functions
h1 (X) = 17 h2(X) =X, h3(X) = Xza h4(X) = X3

continuity hs(x) = (x — &1)3,  he(x) = (x — &)2

continuous function, continuous first and second

Aariviativiac
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Piecewise Constant Piecewise Linear

El 5‘3 El Ez

Continuous Piecewise Linear Piecewise-linear Basis Function

& 3 & £

The top left panel shows a piecewise constant function fit to some
artificial data. The broken vertical lines indicate the positions of the two knots
&1 and E2. The blue curve represents the true function, from which the data were



Piecewise Cubic Polynomials

Discontinuous Continuous

& 31 & 3

Continuous First Dervative Continuous Second Dernivative

& 31 & 3

FIGURE 5.2. A series of piecewise-cubic polynomials, with increasing orders of
continuity.









