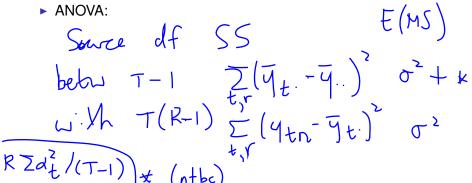
Components of variance

- Example: 1-way layout/k-group comparison/ 1-way ANOVA
- $\flat \ \mathbf{y}_{tr} = \mu + \alpha_t + \epsilon_{tr}, \quad \mathbf{r} = 1, \dots, \mathbf{R}; \ t = 1, \dots, \mathbf{T}, \quad \epsilon_{tr} \sim (\mathbf{0}, \sigma^2)$
- $\hat{\alpha}_t = \bar{y}_{t.} \bar{y}_{..}$, under constraint $\sum \alpha_t = 0$
- $\operatorname{var}(\bar{y}_{t.} \bar{y}_{s.}) = \frac{2\sigma^2}{R}$
- $\hat{\sigma}^2 = s^2 = \sum_{r,t} (y_{tr} \bar{y}_{t.})^2 / T(R-1)$
- ANOVA:

Components of variance

- Example: 1-way layout/k-group comparison/ 1-way ANOVA
- $\flat \ \mathbf{y}_{tr} = \mu + \alpha_t + \epsilon_{tr}, \quad \mathbf{r} = 1, \dots, \mathbf{R}; \ t = 1, \dots, \mathbf{T}, \quad \epsilon_{tr} \sim (\mathbf{0}, \sigma^2)$
- $\hat{\alpha}_t = \bar{y}_{t.} \bar{y}_{..}$, under constraint $\sum \alpha_t = 0$
- ► $\operatorname{var}(\bar{y}_{t.} \bar{y}_{s.}) = \frac{2\sigma^2}{R}$ ► $\hat{\sigma}^2 = s^2 = \sum_{r,t} (y_{tr} - \bar{y}_{t.})^2 / T(R - 1)$



Change model parameterization

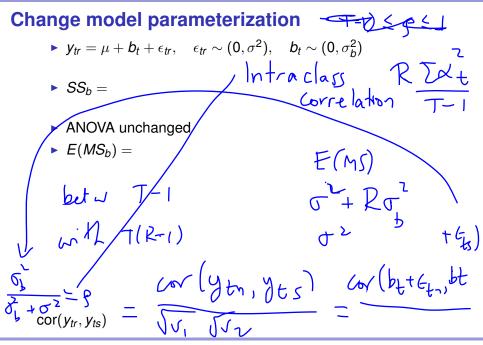
$$\flat \ y_{tr} = \mu + b_t + \epsilon_{tr}, \quad \epsilon_{tr} \sim (0, \sigma^2), \quad b_t \sim (0, \sigma_b^2) \qquad (\text{ind} \ .)$$

- $\blacktriangleright SS_b =$
- ANOVA unchanged
- $E(MS_b) =$

 $cor(y_{tr}, y_{ts})$

.

Change model parameterization $\Sigma(\underline{X},-\underline{Y})$ $\flat \ \mathbf{y}_{tr} = \mu + \mathbf{b}_t + \epsilon_{tr}, \quad \epsilon_{tr} \sim (\mathbf{0}, \sigma^2), \quad \mathbf{b}_t \sim (\mathbf{0}, \sigma^2_{\mathbf{h}})$ $\sum \sum (\overline{y}_{t}, -\overline{y}_{t})$ ► *SS*_b = $\sim (\sigma^2 + R\sigma_h^2)$ Var 4+ = vor ZP++E $cor(y_{tr}, y_{ts})$



- ► Under $H_0: \sigma_b^2 = 0$: $E(MS_b) = \sigma^2$ $\sigma^2 = MS_{VV}$ ► Estimation of σ^2 and $\sigma_b^2 = E(MS_b) = \sigma^2 + R\sigma_b^2$ $m \cdot o \cdot m$. $\frac{f}{R} (MS_b - MS_{VV}) = \sigma_b^2$
 - Estimation of σ_b^2/σ^2 using *F* distribution
 - Estimation of µ:

See Example 9.14: Exercise: verify CI for ratio

- Under $H_0: \sigma_b^2 = 0$:
 - Estimation of σ^2 and σ_b^2

- Estimation of σ_b^2/σ^2 using *F* distribution
- Estimation of µ:

► See Example 9.14: Exercise: verify CI for ratio

MS1/ (02+Roj)

 \sim F_{T-1}, + (r-1)

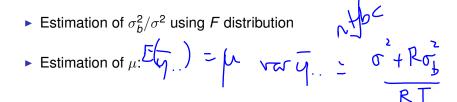
р. 450 9**09,** А

(-6.01, 1.34)

MSw/o'

• Under
$$H_0: \sigma_b^2 = 0$$
:

Estimation of σ² and σ²_b



See Example 9.14: Exercise: verify CI for ratio

- Under $H_0: \sigma_b^2 = 0$:
- Estimation of σ² and σ²_b

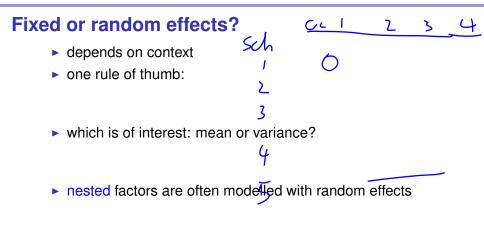
- Estimation of σ_b^2/σ^2 using *F* distribution
- Estimation of µ:

See Example 9.14: Exercise: verify CI for ratio

Fixed or random effects?

- depends on context

► one rule of thumb: if factor levels are a random sample of all possible levels



are levels of factor in one group same as levels of factors in another group?

Example: several nested levels of variation p.450

- response: success of a surgical procedure ("measured on ...")
- patients surgeons hospitals

$$y_{hsp} = \mu + b_{h} + e_{hs} + \epsilon_{hsp}$$

$$E(y_{h,p}) = \mu \quad \text{all randon} = \mu$$

$$\mu + b_{h} \quad if \quad e_{,} \epsilon_{-} (1), -\mu$$

$$\mu + b_{h} + e_{\lambda}, \quad \epsilon_{-}$$

... fixed or random?

►
$$y_{hsp} = \mu + b_h + e_{hs} + \epsilon_{hsp}$$

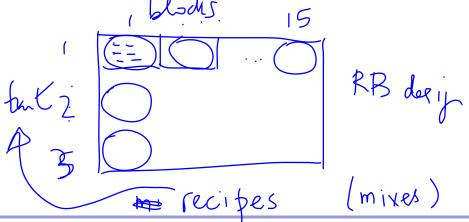
► $E(y_{hsp}) =$
 $E(y_{hsp}) =$
 $f = \int_{-\infty}^{2} \int_{-\infty$

Example: randomized blocks with replications

►
$$y_{tbr} = \mu + \alpha_t + \beta_b + (\alpha\beta)tb + \epsilon_{tbr}$$
 $E(MS)$
The Maches
► ANOVA:
 $t_{t} = 1$ $\sigma^* + 2\alpha_t \frac{BR}{T-1}$ $\sigma^* + R\sigma_{AB}^* + \frac{O}{2}$
 $bth = B-1$ $\sigma^2 + 2\beta_t \frac{TK}{B-1}$ $\sigma^2 + R\sigma_{AB}^* + \frac{O}{2}$
 $t_{xb} = (T-1)(B-1) \sigma^2 + 2(k\beta) \frac{K}{L^2} \frac{R}{T-1} + R\sigma_{AB}^*$
 $t_{xb} = (T-1)(B-1) \sigma^2 + 2(k\beta) \frac{K}{L^2} \frac{R}{T-1} + R\sigma_{AB}^*$
 $bth = R - 1$ $\sigma^2 + 2(k\beta) \frac{K}{L^2} \frac{R}{T-1} + R\sigma_{AB}^*$
 $t_{xb} = (T-1)(B-1) \sigma^2 + 2(k\beta) \frac{K}{L^2} \frac{R}{T-1} + R\sigma_{AB}^*$
 $bth = R - 1$ σ^2 σ^2
 $t_{xb} = (T-1)(B-1) \sigma^2$ σ^2 $T - 1$ σ^2 $T - 1$ σ^2 σ^2

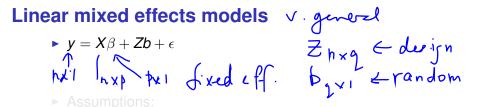
Split plot experiments

One design, often RB, at 'whole plot' level Second design, often with random effects, at subplot level Example 9.15



Split plot experiments

One design, often RB, at 'whole plot' level Second design, often with random effects, at subplot level Example 9.15 whole plots in I exp Sub plats is another lever ● F MS_r MS₋/MS_m, femp inc I temp the temp temp FNOVA rec mix reidud FXMix MS



▶ y | b ~

► y ~

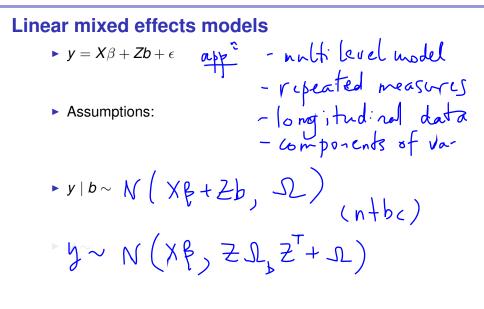
See Example 9.16 – note imbalance

Linear mixed effects models

►
$$y = X\beta + Zb + \epsilon$$

► Assumptions: $\xi \sim N(0, \Omega)$: $b \sim N(0, L_b)$
 $\rightarrow (\sim N(0, \sigma T))$

See Example 9.16 – note imbalance



See Example 9.16 – note imbalance

... Example 9.16

Example 9.16 (Longitudinal data) A short longitudinal study has one individual allocated to the treatment and two to the control, with observations

$$y_{1j} = \beta_0 + b_1 + \varepsilon_{1j}, \quad y_{21} = \beta_0 + b_2 + \varepsilon_{21}, \quad y_{3j} = \beta_0 + \beta_1 + b_3 + \varepsilon_{3j}, \quad j = 1, 2.$$

Thus there are two measurements on the first and third individuals, and just one on the second. The b_j represent variation among individuals and the ε_{ij} variation between measures on the same individuals. If the *b*'s and ε 's are all mutually independent with variances σ_b^2 and σ^2 , then

$$\begin{pmatrix} y_{11} \\ y_{12} \\ y_{21} \\ y_{31} \\ y_{32} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 1 & 0 \\ 1 & 1 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} \beta_0 \\ \beta_1 \end{pmatrix} + \begin{pmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} b_1 \\ b_2 \\ b_3 \end{pmatrix} + \begin{pmatrix} \varepsilon_{11} \\ \varepsilon_{12} \\ \varepsilon_{21} \\ \varepsilon_{31} \\ \varepsilon_{32} \end{pmatrix}$$

and this fits into formulation (9.12) with $\Omega_b = \sigma_b^2 I_3$ and $\Omega = \sigma^2 I_5$. Here ψ comprises the scalar σ_b^2/σ^2 , and hence the variance matrix

$$\Omega + Z\Omega_b Z^{\mathsf{T}} = \begin{pmatrix} \sigma_b^2 + \sigma^2 & \sigma_b^2 & 0 & 0 & 0 \\ \sigma_b^2 & \sigma_b^2 + \sigma^2 & 0 & 0 & 0 \\ 0 & 0 & \sigma_b^2 + \sigma^2 & 0 & 0 \\ 0 & 0 & 0 & \sigma_b^2 + \sigma^2 & \sigma_b^2 \\ 0 & 0 & 0 & \sigma_b^2 & \sigma_b^2 + \sigma^2 \end{pmatrix}$$

may be written as

STA 2201S: Jan 20, 2012

 $(1 + \psi \quad \psi \quad 0 \quad 0 \quad 0$

1

•
$$y \sim N(X\beta, \underline{Z\Omega_b Z^T + \Omega}) = N(X\beta, \sigma^2 \Upsilon^{-1})$$
 Ψ par. in Υ

•
$$\mathbf{y} \sim N(X\beta, Z\Omega_b Z^T + \Omega) = N(X\beta, \sigma^2 \Upsilon^{-1})$$

log-likelihood function

$$-\frac{1}{20}$$
 (g - X (b) \mathcal{Y} (y X (b)

constrained m.l.e.'s

$$-\frac{n}{2}\log\sigma^2 + \frac{1}{2}\log|\tau|$$

$$\mathcal{L}_{\text{REML}}(\beta,\sigma,\psi) = \mathcal{L}(\beta,\sigma^{2},\psi) + (\frac{p}{2}) + \sigma^{2}$$
$$-\frac{1}{2} \log |\chi^{\dagger} \chi | \chi$$

•
$$\mathbf{y} \sim N(X\beta, Z\Omega_b Z^T + \Omega) = N(X\beta, \sigma^2 \Upsilon^{-1})$$

log-likelihood function

$$\widetilde{\sigma_{\text{REML}}} = (y - \chi \hat{\beta}) \widehat{\tau} (y - \chi \hat{\beta})$$

$$n - p$$

constrained m.l.e.'s

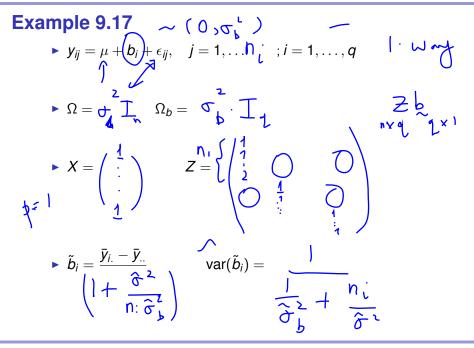
•
$$y \sim N(X\beta, Z\Omega_b Z^T + \Omega) = N(X\beta, \sigma^2 \Upsilon^{-1})$$

• prediction:

$$E(b \mid y) = (Z^{T} \Omega^{-1} Z + \Omega_{b}^{-1})^{-1} Z^{T} \Omega^{-1} (y - X\beta)$$

$$var(b \mid y) = (Z^{T} \Omega^{-1} Z + \Omega_{b}^{-1})^{-1}$$

$$\overset{\sim}{\longrightarrow} = \left(2^{T} \Omega^{-1} Z + \Omega_{b}^{-1} \right)^{-1} Z^{T} \Omega^{-1} (y - X\beta)$$



Example 9.18

- repeated measurements on the 30 individuals, at 5 time points
- might expect that regression relationship against time is similar for each individual, subject to random variation
- model $y_{jt} = \beta_0 + b_{j0} + (\beta_1 + b_{j1})x_{jt} + \epsilon_{jt}, \quad t = 1, \dots, 5$
- ► x_{jt} takes values 0, 1, 2, 3, 4 for t = 1, 2, 3, 4, 5
- same for each j
- data(rat.growth, library="SMPracticals")
- $(b_{j0}, b_{j1}) \sim N_2(0, \Omega_b), \quad \epsilon_{jt} \sim N(0, \sigma^2)$ independent
- two fixed parameters β_0 , β_1
- four variance/covariance parameters: $\sigma_{b0}^2, \sigma_{b1}^2, \text{cov}(b_0, b_1), \sigma^2$

... Example 9.18

► maximum likelihood estimates of fixed effects: $\hat{\beta}_0 = 156.05(2.16), \hat{\beta}_1 = 43.27(0.73)$

weight in week 1 is estimated to be about 156 units, and average increase per week estimated to be 43.27

there is large variability between rats: estimated standard deviation of 10.93 for intercept, 3.53 for slope

there is little correlation between the intercepts and slopes

library(MASS) # this is included the standard R distribution library(SMPracticals) # this has various data sets from Davison's book library(SMPracticals) # and now it works data(rat.growth) # for Example 9.18 rat.growth[1:10,] # to see what it looks like, and to see variable names with(rat.growth, plot(y ~ week , type="l")) separate.lm = lm(y ~ week + factor(rat)+ week:factor(rat), data = rat.growth) # fit sep rat.mixed = lmer(y ~ week + (week)rat), data = rat.growth) # REML is the default summary(rat.mixed) # compare Table 9.28

This week's study

No clear evidence Tamiflu works. study finds

CARLY WEEKS

From Thursday's Globe and Mail Published Wednesday, Jan. 18, 2012 5:41PM EST Last updated Wednesday, Jan. 18, 2012 5:47PM EST

Independent high-guality evidence for health care decision making

from The Cochrane Collaboration

Home > Evidence Based Medicine > Evidence-Based Medicine > Database Home > Abstract

DATABASE TOOLS Intervention Review Neuraminidase inhibitors for preventing and treating influenza in healthy Save to My Profile adults and children Recommend to Your Librarian Tom Jefferson^{1,*}, Mark A Jones². Peter Database Title Doshi³, Chris B Del Mar⁴, Carl J Heneghan⁵, The Cochrane Librar DATABASE MENU Rokuro Hama⁶, Matthew J Thompson⁵ Database Home Editorial Group: Cochrane Acute Respiratory FIND ARTICLES Infections Group A-Z Published Unline: 18 JAN 2012 STA 22015: Jan 20 2012 24/24

LOGIN

Enter e-m Enter pas

REMI