
Analysis of two factor experiments

Suppose we have two treatment factors, A and B, with a and b levels respec-
tively, and we have r replications of a completely randomized design in these
treatments. The linear model can be written as

Yijk = µ + τi + βj + (τβ)ij + εijk (1)

where τi is the effect of level i of treatment A, βj is the effect of level j of
treatment B and (τβ)ij is the interaction.

The analysis of variance table is constructed from the identity

Yijk = Ȳ... + (Ȳi.. − Ȳ...) + (Ȳ.j. − Ȳ...) + (Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...) + (Yijk − Ȳij.)

leading to

Source df Sum of Squares Mean Square
A a− 1

∑
ijk(Ȳi.. − Ȳ...)

2 MSA

B b− 1
∑

ijk(Ȳ.j. − Ȳ...)
2 MSB

A×B (a− 1)(b− 1)
∑

ijk(Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...)
2 MSAB

residual ab(r − 1)
∑

ijk(Ȳijk − Ȳij.)
2 MSresid

This analysis of variance uses the variation between units within each
treatment combination as an estimate of error. This would underestimate
the true error if, for example, the r observations at each treatment combina-
tion were simply r measurements on the same experimental unit. It would
be appropriate if there were available rab units, and the experiment was a
completely randomized design.

In many cases the measurement of error will be associated instead with
replications of the whole experiment, for example on different days, or in
different locations, and so on. Many writers refer to this as “true replication”,
to distinguish it from repeated observations within a treatment combination.
In this case the analysis of variance table will have a separate line for the
main effect of replicates, and the residual will be the replicate-treatment
interaction. This is the case in Example K of [CS]. The use of interaction as
an estimate of error is discussed in Section 4.13 of [CS]. The model analogous
to (1) but with a replicate effect is

Yijk = µ + τi + βj + γk + (τβ)ij + εijk. (2)
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Some authors make a distinction between “crossed” and “nested” factors: in
(1) replicates are nested within treatment and in (2) replicates are crossed
with treatment.

Some insight into the distinction between true replicates and repeat ob-
servations can also be obtained by considering three possible sets of assump-
tions for the treatment effects in (1). In the usual analysis, summarized in
the analysis of variance table above, we have

Source df Mean Square Expected Mean Square
A a− 1 MSA σ2 + rb

∑
τ 2
i /(a− 1)

B b− 1 MSB σ2 + ra
∑

β2
j /(b− 1)

AB (a− 1)(b− 1) MSAB σ2 + r
∑

(τβ)2
ij/{(a− 1)(b− 1)}

residual ab(r − 1) MSresid σ2

where the expected mean squares are calculated from (1) under the assump-
tion Eεijk = 0, var(εijk) = σ2, and the errors are independent. (As usual an
equivalent conclusion can be reached using a randomization analysis.)

One way to compute the expected mean squares from first principles is
to impose the summation restrictions

∑
τi = 0,

∑
βj = 0,

∑
i(τβ)ij = 0, and∑

j(τβ)ij = 0. Then, for example,

E(MSAB) = E{r
∑
ij

(Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...)
2}/{(a− 1)(b− 1)}

= rE
∑
ij

{(τβ)ij + (ε̄ij. − ε̄i.. − ε̄.j. + ε̄...)}2/{(a− 1)(b− 1)}

= {r
∑
ij

(τβ)2
ij + r

∑
ij

E(ε̄ij. − ε̄i.. − ε̄.j. + ε̄...)
2}/{(a− 1)(b− 1)}.

The last expectation is that of a quadratic form in ε̄ij. of rank (a− 1)(b− 1)
and hence equal to σ2(a− 1)(b− 1)/r, leading to the result above.

Under the assumption that the ε’s are normally distributed, we have the
results that SSAB/σ2 follows a noncentral χ2 distribution on (a−1)(b−1) de-
grees of freedom with noncentrality parameter r

∑
ij(τβ)2

ij/(a−1)(b−1), and
SSresid/σ

2 follows a central χ2 distribution on ab(r − 1) degrees of freedom,
and hence that MSAB/MSresid follows a non-central F -distribution, which
can be used for power or sample size calculations. The central F(a−1)(b−1),ab(r−1)

distribution is used for testing the null hypothesis of no interaction.
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A different model for the replicated factorial is the socalled mixed effects
model where we assume the τi are fixed effects and we impose the restriction∑

τi = 0, but we assume (τβ)ij ∼ (0, σ2
ab) is a random effect. As usual we

assume that εijk ∼ (0, σ2), and the ε’s and τβ’s are all mutually uncorrelated.
The table of expected mean squares is

Source df Mean Square Expected Mean Square
A a− 1 MSA σ2 + rσ2

ab + rb
∑

τ 2
i /(a− 1)

B b− 1 MSB σ2 + ra
∑

β2
j /(b− 1)

AB (a− 1)(b− 1) MSAB σ2 + rσ2
ab

residual ab(r − 1) MSresid σ2

Note that the correct F test for main effects of factor A is now computed
from the ratio of MSA to MSAB, the interaction mean square. This is one
way of seeing that the AB interaction really is the correct way to measure
’error’ in the replicated factorial design discussed above.

This model would usually only be appropriate when the factors A and B
are not on the same footing: in Section 6.5 we illustrate this by assuming that
A is a treatment factor of the usual sort, but that the levels of B correspond
to different centers, or laboratories, or times; B is a “nonspecific” factor.

It is often assumed in the mixed model that βj are also random effects,
but we argue in our book (p.148) that this doesn’t really make sense. In
some treatments of the mixed model a further assumption is added re the
interaction terms:

∑
j(τβ)ij = 0, which induces a correlation among the

random interaction terms. Arguments against this are also presented in our
book (p.148), and in DV, 17.8.2. DV give a nice explanation of how this
relates to using interaction mean square for error in a randomized block
design in 17.9.

A third possibility in (1) is to model the effects of both A and B by
independent random variables, supposing that τi ∼ (0, σ2

a), βj ∼ (0, σ2
b ), and

(τβ)ij ∼ (0, σ2
ab). Note that then varYijk = σ2

a + σ2
b + σ2

ab + σ2. The table of
expected mean squares is now

Source df Mean Square Expected Mean Square
A a− 1 MSA σ2 + rbσ2

a + rσ2
ab

B b− 1 MSB σ2 + raσ2
b + rσ2

ab

AB (a− 1)(b− 1) MSAB σ2 + rσ2
ab

residual ab(r − 1) MSresid σ2
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In this case both A and B are assessed by comparing their mean squares
to MSAB, and AB is assessed relative to MSresid. The fully crossed factorial
model with all effects assumed to be random is not very usual in applications;
more common is a model in which random effects are nested within each
other. Suppose for example that the levels of B at one level of A have no
relation to the levels of B at another level of A. For example B could index
repeated samples of some experimental material. Then a nested model with
random effects would take the form

Yijk = µ + τi + βj(i) + εk(ij)

say, where we might assume τi ∼ N(0, σ2
a), βj(i) ∼ N(0, σ2

b ), and εk(ij) ∼
N(0, σ2). The analysis of variance is formed from the decomposition

Yijk = Ȳ... + (Ȳi.. − Ȳ...) + (Ȳij. − Ȳi..) + (Yijk − Ȳij.)

leading to the analysis of variance

Source df Mean Square Expected Mean Square
A a− 1 MSA σ2 + rσ2

b + rbσ2
a

B(in A) a(b− 1) MSB σ2 + rσ2
b

residual ab(r − 1) MSresid σ2

where each effect is tested using the mean squares in the line just below it.
In R mixed and random effects models can be analysed using lme, in the

library nlme. Some of the features are described in Venables and Ripley
(2004). Split plot designs, having two (or more) error mean squares, can also
be analysed using lme. The book by Pinheiro and Bates (2000) Mixed-Effects
Models in S and S-PLUS discusses nonlinear mixed effects models as well.
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