STA 2004F Homework 3 Solutions (Sketch).

1. In part (a) the estimated main effects of A and B are 2.6 and 3.5, respectively. These
are significantly different from zero, as the standard error of an effect estimate is
202/2 =1 and o = 1. The estimated AB interaction is not significantly different from
zero. In part (b) the estimates are A: 0.65, B: 0.85, and AB: 0.15. These are all
within 1 standard error of zero.

In part (c) the estimates are

I A B AB C AC BC ABC
440 -1.35 045 0.00 2.10 -0.95 0.65 -2.10

and the standard error of an estimated effect is 1/,/2. Thus any estimates more than
2,/2 = 1.41 from zero are significantly different from zero at level 0.05. Only the C
and ABC effects are significant at this level, with signs in the opposite direction. The
interpretation of the large ABC' interaction is difficult.

In part (d) the estimates are

I A B AB C AC BC ABC
10.44 4.18 498 188 233 -0.08 -0.18 -0.18

In this case the main effects are all significantly different from zero, and there is just
one significant interaction, AB.

2. Executive Summary: Both the mix and the method of application have a significant
effect on the degree of pigment dispersion in paint. Mix three gave the highest percent-
age reflectance, as did application method three. Mixes 1, 2 and 4 were not significantly
different from each other; the three different methods were significantly different from
each other, all comparisons at level 0.05. The recommended combination for the max-
imum reflectance is mix 3 and method 3.

Design Summary: This experiment was a split plot experiment; the whole plot treat-
ment is mix and the subplot treatment is method. The whole plot experiment is a
randomized block experiment with days as blocks; the interaction between mixes and
blocks gives the estimated mean square error for assessing the differences between the
mixes. The analysis of variance table is:

Source SS df MS
day 2.04 2 1.02
mix 307.5 3 1025
day x mix (error 1) 45 6 0.8
method 2221 2 111.0
mix x method 100 6 1.7
error 2 10.7 16 0.7

The F-test for comparing mixes is based on the ratio 102.5/0.8; the F-test for com-
paring methods, and for assessing the interaction between mix and method is based on
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comparing the respective mean squares to the mean squared error in the second part
of the anova table. The table of treatment means is

mix
method 1 2 3 4 Mean

1 65.3 659 734 66.3 67.7
68.8 69.6 746 69.0 70.5
3 708 734 79.1 721 738

[\)

Mean 683 69.6 75.7 69.1 70.7

The estimated standard error for comparing method means (given in the final column)
is 0.33 = /(2 x 0.672/12), and for comparing mix means (given in the final row)
is0.41 = /(2 x 0.755/9). As expected the precision for comparing mixes is less than
that for comparing methods.

3. The contrast subgroup is {I, ABCD,CDE, ABEY}, and the corresponding treatment
subgroups are {(1), ab, ace, ade, bee, bde, cd, abed}, {a, b, ce, de, abce, abde, acd, bed}, {c, abe, ae, acde, be
{ac, be, e, cde, abe, abede, ad, bd}. The alias sets are
I =ABCD =CDFE = ABFE
A=BCD =ACDE = BE
B=ACD = BCDE = AFE
C =ABD = DE = ABCE
D =ABC =CFE = ABDE
E=ABCDE =CD = AB
AC =BD = ADE = BCE
AD = BC = ACFE = BDE

The fractional factorial is determined by any one of the four treatment subgroups.

4. (a) In the first part of this question just the mean response of each run is used as a
single observation. After estimating the 15 main effects and 2-factor interactions
there are no degrees of freedom left for estimating error. The usual approach is
then to pool the smallest interaction terms to use as an estimate of error. For
this experiment the AD interaction turns out to be exactly 0, which is probably
just chance. It’s not that clear which interactions to pool for estimating error,
but certainly AD, CE, AB and C'D are candidates. If just these four are used
to estimate error the MSE is 1618 on four degrees of freedom. The estimated A
and B main effects are significantly different from zero, as are several two-factor
interactions which are harder to interpret. Note that 1618 estimates the variance
of one ’observation’, i.e. one ybar.

(b) In this analysis we use all the observations, giving an analysis of variance table
with 32 degrees of freedom for error. These come from pooling the s? in each run.
The MSE from this analysis is 9516 on 32 degrees of freedom. THis estimates the
variance of one single response, so we’'d expect it to be 3 times larger than the
estimate in (a), but it is about twice as large as that: the estimate in (a) may



well be too small. In this analysis A and B main effects are again significantly
different from zero, and again there are several significant two-factor interactions.
The estimated effects are identical to those in (a); note that the SS in the anova
table are all multiplied by 3 compared to the anova table of (a).

(c) The analysis here is based on log(s?), where i indexes the 16 runs. Since s? = 0
for runs three, four and twelve we have to make some adjustment before we can
do this analysis. A common solution is to use log(s? + 0.5), another is to replace
log(s?) for i = 3, 4,12 with an arbitrary number; some people used 0, others —100.
Using log(s?+0.5) the largest effects on the sample variability are the main effects
of A and C, whose high levels are associated with a decrease in variability, and
D, whose high level is associated with an increase in variability.

(d) (Thanks to Tim and Xiao-Hong): Setting factor A (button diameter) to its high
level has a significant effect on strength, and the strength further increases with
A at its high level as C' (holding time) is increased from low to high. Setting
B (holding time) to the high level also increases the tensile strength. Results
from the analysis of log s> shows that the variability decreases at high levels of
A and C, and increases when D (electrode force) is at its high level. Thus the
recommendation is for A, B and C' to be set at their high level, and D, and E to
their low level.

It is possible that machine type is a 'noise’ factor not usually under the control of
the operator, in which case we might want to consider which factor combinations
give consistent results regardless of level of factor F; I did not carry out the details
for this though.

Some notes on R

Here is some code that I used for Question 4. There are lots of equivalent ways to get
the same results.

> strength<-scan()

1: 1330 1330 1165 1935 1935 1880 1770 1770 1770 1275 1275 1275 1880 1935

1880 1385 1440 1495 1220 1165 1440 2155 2100 2100 1715 1715 1660 1385
1550 1550 1000 1165 1495 1990 1990 1990 1275 1660 1550 1660 1605 1660
1880 1935 1935 1275 1220 1275

> run<-factor(c(rep(1,3),rep(2,3),rep(3,3),rep(4,3) ,rep(5,3) ,rep(6,3) ,rep(7,3),
rep(8,3),rep(9,3) ,rep(10,3) ,rep(11,3) ,rep(12,3) ,rep(13,3) ,rep(14,3) ,rep(15,3) ,rep(16,3))

> ybar<-tapply(strength,run,mean)

> s2<-tapply(strength,run,var)

> E<-factor(c(rep(-1,8),rep(1,8)))

> D<-factor(rep(c(rep(-1,4),rep(1,4)),2))
> C<-rep(c(-1,-1,1,1),4)

> C<-factor(C)

> B<-factor(rep(c(-1,1),8))

> A<-scan()

{i: -111-11-1-111-1-11-111-1
17:

Read 16 items



> A

(1] -1 1 1

\4

vV V V

coef (parta)
(Intercept)
1.605000e+03
E1l
1.604167e+01
B1:D1
-5.270833e+01
D1:E1
-3.666667e+01

options(contrasts=c("contr.sum",
parta <- aov(ybar~A*BxC*D*E)

-1 1-1-1 1 1-1-1 1-1 1 1-1

A<-factor(A)

contr.poly"))

Al B1
-2.635417e+02 -3.666667e+01
A1:B1 A1:C1
1.145833e+01 8.250000e+01 2.062500e+01
C1:D1 Al1:E1 B1:E1
1.375000e+01 -4.125000e+01 -2.979167e+01

C1
2.291667e+00
B1:C1

D1
-2.520833e+01
A1:D1
4.402352e-14
Cl1:E1
9.166667e+00

# these don’t give exactly what we want; the effect estimates are -2 times these

> print(coef (parta) [-1]*-2)

Al B1 C1 D1 E1l A1:B1
5.271e+02 7.333e+01 -4.583e+00 5.042e+01 -3.208e+01 -2.292e+01
A1:C1 B1:C1 A1:D1 B1:D1 C1:D1 Al1:E1
-1.650e+02 -4.125e+01 -8.805e-14 1.054e+02 -2.750e+01 8.250e+01
B1:E1 C1:E1 D1:E1
5.958e+01 -1.833e+01 7.333e+01

E1l B1:C1
3.208e+01 4.125e+01
B1:D1 A1:C1

1.054e+02 1.650e+02

# even here the notation is terrible, but these are the effect estimates
> sort(abs(.Last.value))
A1:D1 C1 Cl:E1 A1:B1 C1:D1

8.805e-14 4.583e+00 1.833e+01 2.292e+01 2.750e+01

D1 B1:E1 B1 D1:E1 A1:E1
5.042e+01 5.958e+01 7.333e+01 7.333e+01 8.250e+01

Al
5.271e+02
# this is the basis for the suggestion to use AD,

> anova(aov(ybar~A+B+C+D+E+A:C+A:E+B:C+B:D+B:E+D:
Analysis of Variance Table

Response: ybar

Df Sum Sq Mean Sq F value Pr(>F)
A 1 1111267 1111267 687.01 1.3e-05 *x*x*
B 1 21511 21511 13.30 0.0218 =*
C 1 84 84 0.05 0.8309
D 1 10167 10167 6.29 0.0663 .
E 1 4117 4117 2.55 0.1858
A:C 1 108900 108900 67.32 0.0012 *x*
A:E 1 27225 27225 16.83 0.0148 =*
B:C 1 6806 6806 4.21 0.1095
B:D 1 44451 44451 27.48 0.0063 *x*
B:E 1 14201 14201 8.78 0.0414 x*
D:E 1 21511 21511 13.30 0.0218 =*

CE, AB and CD as error

E))



Residuals 4 6470 1618

# for part (b) I have to string out the responses:
> junk <- matrix(strength,ncol=3)

> long <-c(junkl[,11,junk[,2],junk[,3] )

> rm(junk)

AA<-factor(rep(A,3)) # and so on for the others

> anova(aov(long~AA*BB*CC*DD+*EE))
Analysis of Variance Table

Response: long
Df Sum Sq Mean Sq F value Pr(>F)

AA 1 3333802 3333802 350.33 < 2e-16 *x*x
BB 1 64533 64533 6.78 0.01385 *
cC 1 252 252 0.03 0.87173

DD 1 30502 30502 3.21 0.08287 .
EE 1 12352 12352 1.30 0.26303
AA:BB 1 6302 6302 0.66 0.42178
AA:CC 1 326700 326700 34.33 1.6e-06 *x*x*
BB:CC 1 20419 20419 2.15 0.15273
AA:DD 1 8.7e-27 8.7e-27 9.1e-31 1.00000
BB:DD 1 133352 133352 14.01 0.00072 **x*
CC:DD 1 9075 9075 0.95 0.33612
AA:EE 1 81675 81675 8.58 0.00621 *x*
BB:EE 1 42602 42602 4.48 0.04223 *
CC:EE 1 4033 4033 0.42 0.51967
DD:EE 1 64533 64533 6.78 0.01385 *

Residuals 32 304517 9516

# analysis of log(s2+.5) proceeds as in part (a) and is omitted here



