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The setup
I Data: y = (y1, . . . , yn) x1, . . . , xn i = 1, . . . , n

I Model for the probability distribution of yi given xi

I Density (with respect to, e.g., Lebesgue measure)
I f (yi | xi) f (y | x) > 0,

∫
f (y | x)dy = 1

I joint density for y = f (y | x) =
∏

f (yi | xi) independence

I parameters for the density f (y | x ; θ), θ = (θ1, . . . , θd )

I often θ = (ψ, λ)

I θ could have dimension d > n (e.g. genetics)
I θ could have infinite dimension e.g.

E(y | x) = θ(x) ‘smooth’
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Definitions
I Likelihood function

L(θ; y) = L(θ; y1, . . . , yn) = f (y1, . . . , yn; θ) = Πn
i=1f (yi ; θ)

I Log-likelihood function:

`(θ; y) = log L(θ; y)

I Maximum likelihood estimator (MLE)

θ̂ = arg supθL(θ; y) θ̂(y)
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Example: time series studies of air pollution1

I yi : number of deaths in Toronto due to cardio-vascular or
respiratory disease on day i

I xi : 24 hour average of PM10 or O3 in Toronto on day i ,
maximum temperature, minimum temperature, dew point,
relative humidity, day of the week, ...

I model: Poisson distribution for counts
I

f (yi ; θ) = {µi(θ)}yi exp{−µi(θ)}
I

logµ = α + ψPM10 + S(time,df1) + S(temp,df2)

I S(time,df1) a ‘smooth’ function
I typically S(·,df1) =

∑df1
j=1 λjBj(·)

I Bj(·) known basis functions usually splines
I θ = (α,ψ, λ1, λ2) with dimension df1 + df2 + 2
1Peng et al., 2006
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Example: longitudinal study of migraine sufferers2

I latent variable Y ∗ij = xT
ij β + Ui + εij

I observed variable yij ∈ {1, . . . ,h} ↔ αyij−1 < Y ∗ij < αyij ,

I e.g. no headache, mild, moderate, ... intense
I xij covariates – age, education, change in barometric

pressure, use of painkillers, ...
I Ui , εij random effects between and within subjects
I εij = ρεi,j−1 + (1− ρ2)1/2ηij , serial correlation over time
I

L(θ; y) =
n∏

i=1

∫
· · ·

∫
φm(zi1, . . . , zimi ; R)dzi1 . . . dzimi

I Rij = (σ2 + ρ|i−j|)/(σ2 + 1)
2Czado & Varin, 2010
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Very widely used
I IEEE Transactions on Computational Biology and

Bioinformatics
I Crop Breeding, Genetics and Cytology
I The Review of Financial Studies
I IEEE Transactions on Information Theory
I Journal of the American Medical Association
I Molecular Biology and Evolution
I Physical Review D
I US Patent Office

6 / 34



National Post, Toronto, Jan 30 2008



Models, data and likelihood Composite likelihood Properties Questions A few references

Composite likelihood
I Model: Y ∼ f (y ; θ), Y ∈ Y ⊂ Rp, θ ∈ Rd

I Set of events: {Ak , k ∈ K}

I likelihood for an event: Lk (θ; y) ∝ f ({y ∈ Ak}; θ)

I Composite Likelihood: Lindsay, 1988

CL(θ; y) =
∏
k∈K

Lk (θ; y)wk

I {wk , k ∈ K} a set of weights
I single p-dimensional response Y = Yi
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Composite conditional likelihood
I Pseudo-likelihood Besag, 1974

CL(θ; y) =

p∏
r=1

f (yr | {ys : ys a neighbour of yr}; θ)

I or use blocks of observations Vecchia, 1988; Stein et al., 2004

I stratified case-control studies Liang, 1987

CL(θ; y) =

p∏
r=1

p∏
s=r+1

f (yr | yr + ys; θ)

I pairwise conditional CL(θ; y) =
∏p

r=1
∏p

s=1 f (yr | ys; θ)

I full conditional CL(θ; y) =
∏p

r=1 f (yr | y(r); θ)

Molenberghs & Verbeke, 2005
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Composite marginal likelihood
I

CL(θ; y) =
∏
s∈S

fs(ys; θ), subvectors

I Independence Likelihood:
∏p

r=1 f1(yr ; θ) y = (y1, . . . yp)

I Pairwise Likelihood:
∏p−1

r=1
∏p

s=r+1 f2(yr , ys; θ)

I tripletwise likelihood, ...
I pairwise differences:

∏p−1
r=1

∏p
s=r+1 f (yr − ys; θ)

Curriero & Lele, 1999

I and even mixtures of CCL and CML
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Derived quantities
I log composite likelihood: c`(θ; y) = log CL(θ; y)

I score function: U(θ; y) = ∇θc`(θ; y) =
∑

s∈S Us(θ; y)
E{U(θ; Y )} = 0

I maximum composite likelihood est.: θ̂CL = arg sup c`(θ; y)
U(θ̂CL) = 0

I variability matrix: J(θ) = varθ{U(θ; Y )}
I sensitivity matrix: H(θ) = Eθ{−∇θU(θ; Y )}

I Godambe information (or sandwich information):

G(θ) = H(θ)J(θ)−1H(θ)

I J 6= H misspecified model
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Inference
I Sample: Y1, . . . ,Yn CL(θ; y) =

∏n
i=1 CL(θ; yi)

I √
n(θ̂CL − θ)

.∼ N{0,G−1(θ)} G(θ) = H(θ)J(θ)−1H(θ)

I w(θ) = 2{c`(θ̂CL)− c`(θ)} .∼
∑d

a=1 µaZ 2
a Za ∼ N(0,1)

I µ1, . . . , µd eigenvalues of J(θ)H(θ)−1

I w(ψ) = 2{c`(θ̂CL)− c`(θ̃ψ)} .∼
∑d0

a=1 µaZ 2
a

I constrained estimator: θ̃ψ = arg supθ=θ(ψ)c`(θ; y)

I µ1, . . . , µd0 eigenvalues of (Hψψ)−1Gψψ

I Kent, 1982
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Many recent applications
Longitudinal data, binary and continuous: random effects
models ....

Molenberghs and Verbeke, 2005, Ch. 9; Zhao & Joe, 2005
Survival analysis: frailty models, copulas

Parner, 2001; Andersen, 2004; Fiocco et al., 2009
Multi-type responses: discrete and continuous; markers and
event times

de Leon and Carriere, 2007; Fieuws et al.,2007
Finance: time-varying covariance models

Engle et al., 2009
Genetics/bioinformatics: large literature

Tamura et al.,2007; Li, 2008; Mardia et al.,2009
CCL for vonMises distribution: protein folding

Spatial data: geostatistics, spatial point processes
Stein, 2004; Caragea and Smith, 2008; Varin et al., 2005; ...
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and more...
I image analysis Nott and Ryden, 1999

I genetics Fearnhead, 2008; Song, 2008

I gene mapping, linkage disequilibrium Larribe and Lessard,2008

I Rasch model, Bradley-Terry model, ...
I state space models, population dynamics: Andrieu, 2008

I computer experiments with high-dimensional Gaussian
process (n = 20,000) Bingham, 2009

I spatial extremes Padoan et al. 2009
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Point estimation
I θ̂CL

.∼ N{θ,G−1(θ)}
I G(θ) = H(θ)J(θ)−1H(θ)

I how does this compare to the competition?
I θ̂ML

.∼ N{θ, I(θ)−1}, I(θ) Fisher info matrix
I compare I(θ) to G(θ)

I analytical calculation or simulation estimates
I compare empirical variances in simulations
I investigate choice of weights for improved efficiency

Lindsay, 1988; Joe & Lee, 2009

I most natural in context of clustered or longitudinal data
yi = (yi1, . . . , yimi )
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Some results on efficiency
I in clusters, use weights

1
(ni − 1){1 + 0.5(ni − 1)}

Joe & Lee, 2009

I or treat parameters in the mean differently from association
parameters

I for example using optimal score functions for the
parameters in the mean, and CL for association
parameters Kuk, 2007

I in time series applications, downweight observations that
are far apart in time Joe & Lee, 2009; Varin & Vidoni, 2006
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Inference functions
I potential advantage over defining estimating equations

directly (GEE)
I w(ψ) = 2{c`(θ̂CL)− c`(θ̃ψ)} .∼

∑d0
a=1 µaZ 2

a

I approximation by matching first moment or first two
moments

I or by saddlepoint approximation
I or by rescaling w(ψ) Chandler & Bate, 2007; Pace et al., 2009

I use in model selection and model averaging
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Model selection
I Akaike’s information criterion Varin and Vidoni, 2005

AIC = −2c`(θ̂CL; y)− 2 dim(θ)

I Bayesian information criterion Gao and Song, 2009

BIC = −2c`(θ̂CL; y)− log n dim(θ)

I effective number of parameters

dim(θ) = tr{H(θ)G−1(θ)}

I model averaging Hjort and Claeskens, 2008

I selection of tuning parameters in Lasso Gao and Song, 2009
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Some special cases
I Example: multivariate normal:
I Y ∼ N(µ ,Σ): pairwise likelihood estimates ≡ mles
I Y ∼ N(µ1 , σ2R),Rij = ρ: pairwise likelihood est. ≡ mles
I Y ∼ N(µ1 , R): loss of efficiency (although small for ρ > 0)

I closed exponential families
I f (y ; θ) = exp{θT t(y)− c(θ)} = f (tA;B | tB; θ)f (tB; θ)

I require θ to separate in conditional and marginal pieces
I leads to θ̂CL = θ̂ and full efficiency
I multivariate vonMises distribution
I Mardia et al., 2008, 2009

19 / 34



Models, data and likelihood Composite likelihood Properties Questions A few references

Markov chains 3

I comparison of likelihood

L(θ; y) =

p∏
r=2

pr(Yr = yr | Yr−1 = yr−1; θ)

I adjoining pairs CML

CML(θ; y) =

p∏
r=1

pr(Yr = yr ,Yr−1 = yr−1; θ)

I composite conditional likelihood (= Besag’s PL)

CCL(θ; y) =

p−1∏
r=2

pr(Yr = yr | neighbours ; θ)

3Hjort and Varin, 2008
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... Markov chain example
I Random walk with p states and two reflecting barriers
I Transition matrix

P =


0 1 0 0 . . . 0

1− ρ 0 ρ 0 . . . 0
0 1− ρ 0 ρ . . . 0
...

...
...

...
...

...
0 . . . . . . 0 1 0
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... Markov chain example
– Reflecting barrier with five states
– efficiency of pairwise likelihood (dashed line)
– and composite conditional likelihood (solid line)
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Time series and state space models
I f (yt , . . . , y1; θ) = f (yt | y(t−1); θ)f (yt−1 | y(t−2); θ)...f (y1; θ)
I proposal by Azzalini, 1983: replace

f (yt−j | y(t−j+1); θ) by f (yt−j | yt−j+1; θ)
I a version of composite conditional likelihood
I pairwise likelihood

∏
s<t f (yt , ys; θ)

I more natural to down-weight, or ignore, pairs with
|t − s| > m

I simplest example, AR(1) with m = 1; pairwise likelihood
asymptotically fully efficient Jin, 2009

I efficiency decreases with increasing m Davis & Yau, 2009
I extension to AR(1) with additive noise (and more)
I

yt = µ+ xt + εt

xt = γxt−1 + ηt

Varin & Vidoni, 2009 23 / 34
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Spatial data
I composite conditional likelihood more natural
I but composite marginal likelihood can have better

performance
I if the margins are carefully chosen

I Lele & Taper, 2002:
∏
i<j

f (yi − yj ; θ)

I reproduces REML for Gaussian case
I better than maximum likelihood
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Aspects of robustness
I model robustness
I univariate and bivariate margins only, for example
I means, variances, association parameters
I similar in flavour to generalized estimating equations
I specify lower order distributions, instead of lower order

moments
I if there are several joint distributions with the same lower

dimensional margins, inference will be robust over that
class

I but are there?
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... aspects of robustness
I simulation under the wrong model
I example: binary data with higher order correlations

simulated
I model with only mean and pairwise correlations fitted
I pairwise likelihood continues to have good efficiency

Jin, 2009

I example: sparse clustered binary data
I fitted model has wrong correlation structure
I composite conditional likelihood continues to have high

efficiency Wang & Williamson, 2005
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... aspects of robustness
I computational robustness
I composite log-likelihood functions are smoother than

log-likelihood functions
I easier to maximize, easier to work with
I especially in high dimension cases Liang and Yu, 2003

I adapting the EM algorithm
I example: hidden Markov model for transitions between N

genes
I in principle requires estimation of 2N × 2N matrix
I pairwise likelihood reduces computation to O(N2)

Song and Gao, 2009
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Missing data
I binary responses Yi, Zeng and Cook, 2009
I (yij , yik , rij , rik ): rij records missing (0) or not (1)
I generalization to more flexible mean functions

(non-parametric) He & Yi, 2009
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Questions about inference
I When Is composite marginal likelihood preferred to

conditional composite likelihood ? (always?)
I why is composite likelihood seemingly so efficient?
I where are the exceptions?
I model classes that lead to asymptotic efficiency?

Mardia et al, 2009

I role of sufficiency?
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... questions
I asymptotic theory: is composite likelihood ratio test

preferable to Wald-type test?
I estimation of Godambe information J = varU(θ)

jackknife, bootstrap, empirical estimates
I estimation of eigenvalues of (Hψψ)−1Gψψ
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... questions
I approximation of distribution of w(ψ)

.∼
∑
µaZ 2

a

I Satterthwaite type? (fχ2
d ): Geys et al, 1999

I saddlepoint approximation?: Kuonen, 2004

I direct adjustment? Pace et al., 2009

I large p, small n asymptotics: time series, genetics
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... questions
I compatibility Yi, CMS talk

I can composite likelihood be used for modeling
when no multivariate distribution exists that is compatible
with margins?

I e.g. extreme values, survival data Parner, 2001

I Hammersley-Clifford theorem for conditional distributions
I analogue for marginal distributions?
I Does theory of multivariate copulas help in understanding

this?
I Example: pair specific parameters

CL(ω) =
∏

i

∏
r<s

f (yir , yis;ωrs), θ = Aωrs

Molenberghs & Verbeke, 2005; Fieuws et al, 2007

32 / 34



Models, data and likelihood Composite likelihood Properties Questions A few references

... questions
I How do we ensure identifiability of parameters? Yi, CMS talk

I Relationship to modelling via GEE?
I how to investigate robustness systematically?
I how to make use of objective function
I design of composite likelihoods Lindsay, Yi & Sun, 2009

I can we really think beyond means and covariances in
multivariate settings?
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