Composite likelihood

Properties

Questions

A few references

Likelihood inference in complex models

Nancy Reid

December 6, 2009

with Cristiano Varin and David Firth Ca' Foscari University, Venice and University of Warwick

Models,	data	and	likelihood	
•00000)			

Composite likelihood

Properties

Questions

A few references

The setup

- ► Data: $y = (y_1, ..., y_n)$ $X_1, ..., X_n$ i = 1, ..., n
- Model for the probability distribution of y_i given x_i
- Density (with respect to, e.g., Lebesgue measure)
- ► $f(y_i | x_i)$ $f(y | x) > 0, \int f(y | x) dy = 1$
- ▶ joint density for $y = f(y | x) = \prod f(y_i | x_i)$ independence
- ▶ parameters for the density $f(y | x; \theta)$, $\theta = (\theta_1, \dots, \theta_d)$
- often $\theta = (\psi, \lambda)$
- θ could have dimension d > n (e.g. genetics)
- θ could have infinite dimension e.g. $E(y \mid x) = \theta(x)$ 'smooth'

Composite likelihood

Properties

Questions

A few references

Definitions

Likelihood function

 $L(\theta; \mathbf{y}) = L(\theta; \mathbf{y}_1, \ldots, \mathbf{y}_n) = f(\mathbf{y}_1, \ldots, \mathbf{y}_n; \theta) = \prod_{i=1}^n f(\mathbf{y}_i; \theta)$

Log-likelihood function:

 $\ell(\theta; y) = \log L(\theta; y)$

Maximum likelihood estimator (MLE)

$$\hat{\theta}$$
 = arg sup _{θ} $L(\theta; y)$ $\hat{\theta}(y)$

Composite likelihood

Properties

Questions

A few references

Example: time series studies of air pollution¹

- y_i: number of deaths in Toronto due to cardio-vascular or respiratory disease on day i
- ► x_i: 24 hour average of PM₁₀ or O₃ in Toronto on day i, maximum temperature, minimum temperature, dew point, relative humidity, day of the week, ...

model: Poisson distribution for counts

$$f(y_i; \theta) = \{\mu_i(\theta)\}^{y_i} \exp\{-\mu_i(\theta)\}$$

 $\log \mu = \alpha + \psi PM_{10} + S(time, df_1) + S(temp, df_2)$

- $S(time, df_1)$ a 'smooth' function
- typically $S(\cdot, df_1) = \sum_{j=1}^{df_1} \lambda_j B_j(\cdot)$
- ► $B_j(\cdot)$ known basis functions usually splines

• $\theta = (\alpha, \psi, \lambda_1, \lambda_2)$ with dimension $df_1 + df_2 + 2$

¹Peng et al., 2006

Composite likelihood

Properties

Questions

A few references

Example: longitudinal study of migraine sufferers²

- ► latent variable $Y_{ij}^* = x_{ij}^T \beta + U_i + \epsilon_{ij}$
- ► observed variable $y_{ij} \in \{1, ..., h\} \leftrightarrow \alpha_{y_{ij}-1} < Y_{ij}^* < \alpha_{y_{ij}}$
- ▶ e.g. no headache, mild, moderate, ... intense
- x_{ij} covariates age, education, change in barometric pressure, use of painkillers, ...
- U_i, ϵ_{ij} random effects between and within subjects
- $\epsilon_{ij} = \rho \epsilon_{i,j-1} + (1 \rho^2)^{1/2} \eta_{ij}$, serial correlation over time

$$\boldsymbol{L}(\boldsymbol{\theta};\boldsymbol{y}) = \prod_{i=1}^{n} \int \cdots \int \phi_{m}(z_{i1},\ldots,z_{im_{i}};\boldsymbol{R}) \mathrm{d}z_{i1}\ldots \mathrm{d}z_{im_{i}}$$

•
$$R_{ij} = (\sigma^2 + \rho^{|i-j|})/(\sigma^2 + 1)$$

²Czado & Varin, 2010

Composite likelihood

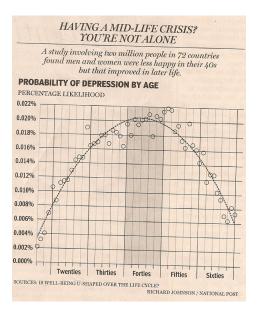
Properties

Questions

A few references

Very widely used

- IEEE Transactions on Computational Biology and Bioinformatics
- Crop Breeding, Genetics and Cytology
- The Review of Financial Studies
- IEEE Transactions on Information Theory
- Journal of the American Medical Association
- Molecular Biology and Evolution
- Physical Review D
- US Patent Office



National Post, Toronto, Jan 30 2008

Composite likelihood

Properties

Questions

A few references

Composite likelihood

- ▶ Model: $Y \sim f(y; \theta), \quad Y \in \mathcal{Y} \subset \mathbb{R}^p, \quad \theta \in \mathbb{R}^d$
- Set of events: $\{A_k, k \in K\}$
- ▶ likelihood for an event: $L_k(\theta; y) \propto f(\{y \in A_k\}; \theta)$
- Composite Likelihood:

Lindsay, 1988

$$CL(\theta; y) = \prod_{k \in K} L_k(\theta; y)^{w_k}$$

- $\{w_k, k \in K\}$ a set of weights
- single *p*-dimensional response $Y = Y_i$

Composite likelihood

Properties

Questions

A few references

Composite conditional likelihood

Pseudo-likelihood

Besag, 1974

$$CL(\theta; y) = \prod_{r=1}^{p} f(y_r \mid \{y_s : y_s \text{ a neighbour of } y_r\}; \theta)$$

or use blocks of observations

Vecchia, 1988; Stein et al., 2004

stratified case-control studies

Liang, 1987

$$CL(\theta; \mathbf{y}) = \prod_{r=1}^{p} \prod_{s=r+1}^{p} f(\mathbf{y}_r \mid \mathbf{y}_r + \mathbf{y}_s; \theta)$$

- ► pairwise conditional $CL(\theta; y) = \prod_{r=1}^{p} \prod_{s=1}^{p} f(y_r | y_s; \theta)$
- ▶ full conditional $CL(\theta; y) = \prod_{r=1}^{p} f(y_r \mid y_{(r)}; \theta)$

Molenberghs & Verbeke, 2005

Composite likelihood

Properties

Questions

A few references

Composite marginal likelihood

$$CL(\theta; y) = \prod_{s \in S} f_s(y_s; \theta),$$
 subvectors

- ► Independence Likelihood: $\prod_{r=1}^{p} f_1(y_r; \theta)$ $y = (y_1, \dots, y_p)$
- ► Pairwise Likelihood: $\prod_{r=1}^{p-1} \prod_{s=r+1}^{p} f_2(y_r, y_s; \theta)$
- tripletwise likelihood, ...
- ► pairwise differences: $\prod_{r=1}^{p-1} \prod_{s=r+1}^{p} f(y_r y_s; \theta)$

Curriero & Lele, 1999

and even mixtures of CCL and CML

Composite likelihood

Properties

Questions

A few references

Derived quantities

- ► log composite likelihood: $c\ell(\theta; y) = \log CL(\theta; y)$
- ► score function: $U(\theta; y) = \nabla_{\theta} c\ell(\theta; y) = \sum_{s \in S} U_s(\theta; y)$ $E\{U(\theta; Y)\} = 0$
- ► maximum composite likelihood est.: $\hat{\theta}_{CL} = \arg \sup c\ell(\theta; y)$ $U(\hat{\theta}_{CL}) = 0$
- variability matrix: $J(\theta) = var_{\theta} \{ U(\theta; Y) \}$
- sensitivity matrix: $H(\theta) = E_{\theta}\{-\nabla_{\theta}U(\theta; Y)\}$
- Godambe information (or sandwich information):

$$G(\theta) = H(\theta)J(\theta)^{-1}H(\theta)$$

► $J \neq H$

misspecified model

Composite likelihood

Properties

Questions

A few references

Inference

- ► Sample: Y_1, \ldots, Y_n $CL(\theta; y) = \prod_{i=1}^n CL(\theta; y_i)$
 - $\sqrt{n(\hat{\theta}_{CL} \theta)} \sim N\{0, G^{-1}(\theta)\}$ $G(\theta) = H(\theta)J(\theta)^{-1}H(\theta)$
- $w(\theta) = 2\{c\ell(\hat{\theta}_{CL}) c\ell(\theta)\} \sim \sum_{a=1}^{d} \mu_a Z_a^2 \quad Z_a \sim N(0, 1)$ • μ_1, \dots, μ_d eigenvalues of $J(\theta)H(\theta)^{-1}$
- $\mathbf{w}(\psi) = 2\{c\ell(\hat{\theta}_{CL}) c\ell(\tilde{\theta}_{\psi})\} \sim \sum_{a=1}^{d_0} \mu_a Z_a^2$
- ► constrained estimator: $\tilde{\theta}_{\psi} = \arg \sup_{\theta = \theta(\psi)} c\ell(\theta; y)$
- μ_1, \ldots, μ_{d_0} eigenvalues of $(H^{\psi\psi})^{-1}G^{\psi\psi}$

Kent, 1982

Composite likelihood

Properties

Questions

A few references

Many recent applications

Longitudinal data, binary and continuous: random effects models

Molenberghs and Verbeke, 2005, Ch. 9; Zhao & Joe, 2005 Survival analysis: frailty models, copulas

Parner, 2001; Andersen, 2004; Fiocco et al., 2009

Multi-type responses: discrete and continuous; markers and event times

de Leon and Carriere, 2007; Fieuws et al., 2007

Finance: time-varying covariance models

Engle et al., 2009

Genetics/bioinformatics: large literature

Tamura et al.,2007; Li, 2008; Mardia et al.,2009

CCL for vonMises distribution: protein folding

Spatial data: geostatistics, spatial point processes

Stein, 2004; Caragea and Smith, 2008; Varin et al., 2005; ...

Composite likelihood

Properties

Questions

A few references

and more...

- image analysis
- genetics

Nott and Ryden, 1999

- Fearnhead, 2008; Song, 2008
- gene mapping, linkage disequilibrium Larribe and Lessard,2008
- Rasch model, Bradley-Terry model, ...
- state space models, population dynamics: Andrieu, 2008
- computer experiments with high-dimensional Gaussian process (n = 20,000)
 Bingham, 2009
- spatial extremes

Padoan et al. 2009

Composite likelihood

Properties • 0 0 0 0 • 0 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 • 0 0 0 • 0 Questions

A few references

Point estimation

- $\blacktriangleright \ \hat{\theta}_{CL} \sim N\{\theta, G^{-1}(\theta)\}$
- $G(\theta) = H(\theta)J(\theta)^{-1}H(\theta)$
- how does this compare to the competition?
- ► $\hat{\theta}_{ML} \sim N\{\theta, I(\theta)^{-1}\}, I(\theta)$ Fisher info matrix
- compare $I(\theta)$ to $G(\theta)$
- analytical calculation or simulation estimates
- compare empirical variances in simulations
- investigate choice of weights for improved efficiency

Lindsay, 1988; Joe & Lee, 2009

► most natural in context of clustered or longitudinal data y_i = (y_{i1},..., y_{im_i})

Composite likelihood

Properties ○●○○○ ○○○○○ Questions

A few references

Some results on efficiency

in clusters, use weights

$$\frac{1}{(n_i-1)\{1+0.5(n_i-1)\}}$$

Joe & Lee, 2009

- or treat parameters in the mean differently from association parameters
- for example using optimal score functions for the parameters in the mean, and CL for association parameters
 Kuk, 2007
- in time series applications, downweight observations that are far apart in time
 Joe & Lee, 2009; Varin & Vidoni, 2006

Composite likelihood

Properties

Questions

A few references

Inference functions

- potential advantage over defining estimating equations directly (GEE)
- $\mathbf{w}(\psi) = 2\{c\ell(\hat{\theta}_{CL}) c\ell(\tilde{\theta}_{\psi})\} \sim \sum_{a=1}^{d_0} \mu_a Z_a^2$
- approximation by matching first moment or first two moments
- or by saddlepoint approximation
- or by rescaling $w(\psi)$ Chandler & Bate, 2007; Pace et al., 2009
- use in model selection and model averaging

Composite likelihood

Properties

Questions

A few references

Model selection

Akaike's information criterion

Varin and Vidoni, 2005

$$AIC = -2c\ell(\hat{ heta}_{CL}; y) - 2 \dim(heta)$$

Bayesian information criterion

Gao and Song, 2009

$$BIC = -2c\ell(\hat{ heta}_{CL}; y) - \log n \dim(\theta)$$

effective number of parameters

$$\dim(\theta) = \operatorname{tr}\{H(\theta)G^{-1}(\theta)\}$$

- model averaging
 Hjort and Claeskens, 2008
- selection of tuning parameters in Lasso Gao and Song, 2009

Composite likelihood

Properties ○○○○● ○○○○○ Questions

A few references

Some special cases

- Example: multivariate normal:
- $Y \sim N(\underline{\mu}, \Sigma)$: pairwise likelihood estimates \equiv mles
- $Y \sim N(\mu \underline{1}, \sigma^2 R), R_{ij} = \rho$: pairwise likelihood est. \equiv mles
- $Y \sim N(\mu \underline{1}, R)$: loss of efficiency (although small for $\rho > 0$)
- closed exponential families
- $f(y;\theta) = \exp\{\theta^T t(y) c(\theta)\} = f(t_{A;B} \mid t_B;\theta)f(t_B;\theta)$
- require θ to separate in conditional and marginal pieces
- leads to $\hat{\theta}_{CL} = \hat{\theta}$ and full efficiency
- multivariate vonMises distribution
- Mardia et al., 2008, 2009

Composite likelihood

Properties

Questions

A few references

Markov chains ³

comparison of likelihood

$$L(\theta; \mathbf{y}) = \prod_{r=2}^{p} \operatorname{pr}(\mathbf{Y}_r = \mathbf{y}_r \mid \mathbf{Y}_{r-1} = \mathbf{y}_{r-1}; \theta)$$

adjoining pairs CML

$$CML(\theta; y) = \prod_{r=1}^{p} \operatorname{pr}(Y_r = y_r, Y_{r-1} = y_{r-1}; \theta)$$

composite conditional likelihood (= Besag's PL)

$$CCL(\theta; y) = \prod_{r=2}^{p-1} \operatorname{pr}(Y_r = y_r \mid \text{neighbours}; \theta)$$

³Hjort and Varin, 2008

Composite likelihood

Properties

Questions

A few references

... Markov chain example

- Random walk with p states and two reflecting barriers
- Transition matrix

$$P = \begin{pmatrix} 0 & 1 & 0 & 0 & \dots & 0 \\ 1 - \rho & 0 & \rho & 0 & \dots & 0 \\ 0 & 1 - \rho & 0 & \rho & \dots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & \dots & \dots & 0 & 1 & 0 \end{pmatrix}$$

Composite likelihood

Properties

Questions

A few references

... Markov chain example

- Reflecting barrier with five states
- efficiency of pairwise likelihood (dashed line)
- and composite conditional likelihood (solid line)

Composite likelihood

Properties

Questions

A few references

Time series and state space models

- $f(y_t, ..., y_1; \theta) = f(y_t | y_{(t-1)}; \theta) f(y_{t-1} | y_{(t-2)}; \theta) ... f(y_1; \theta)$
- proposal by Azzalini, 1983: replace

 $f(y_{t-j} | y_{(t-j+1)}; \theta)$ by $f(y_{t-j} | y_{t-j+1}; \theta)$

- a version of composite conditional likelihood
- pairwise likelihood $\prod_{s < t} f(y_t, y_s; \theta)$
- more natural to down-weight, or ignore, pairs with |t s| > m
- simplest example, AR(1) with m = 1; pairwise likelihood asymptotically fully efficient
- efficiency decreases with increasing m Davis & Yau, 2009
- extension to AR(1) with additive noise (and more)
- ►

$$y_t = \mu + x_t + \epsilon_t$$
$$x_t = \gamma x_{t-1} + \eta_t$$

Varin & Vidoni, 2009 23/34

Composite likelihood

Properties ○○○○○ ○○○○● Questions

A few references

Spatial data

- composite conditional likelihood more natural
- but composite marginal likelihood can have better performance
- if the margins are carefully chosen

• Lele & Taper, 2002:
$$\prod_{i < j} f(y_i - y_j; \theta)$$

- reproduces REML for Gaussian case
- better than maximum likelihood

Composite likelihood

Properties

Questions

A few references

Aspects of robustness

- model robustness
- univariate and bivariate margins only, for example
- means, variances, association parameters
- similar in flavour to generalized estimating equations
- specify lower order distributions, instead of lower order moments
- if there are several joint distributions with the same lower dimensional margins, inference will be robust over that class
- but are there?

Composite likelihood

Properties

Questions

A few references

... aspects of robustness

- simulation under the wrong model
- example: binary data with higher order correlations simulated
- model with only mean and pairwise correlations fitted
- pairwise likelihood continues to have good efficiency

Jin, 2009

- example: sparse clustered binary data
- fitted model has wrong correlation structure
- composite conditional likelihood continues to have high efficiency
 Wang & Williamson, 2005

Composite likelihood

Properties

Questions

A few references

... aspects of robustness

- computational robustness
- composite log-likelihood functions are smoother than log-likelihood functions
- easier to maximize, easier to work with
- especially in high dimension cases

Liang and Yu, 2003

- adapting the EM algorithm
- example: hidden Markov model for transitions between N genes
- in principle requires estimation of $2^N \times 2^N$ matrix
- pairwise likelihood reduces computation to $O(N^2)$

Song and Gao, 2009

Composite likelihood

Properties ○○○○○ ○○○○● Questions

A few references

Missing data

binary responses

Yi, Zeng and Cook, 2009

- ► (*y_{ij}*, *y_{ik}*, *r_{ij}*, *r_{ik}*): *r_{ij}* records missing (0) or not (1)
- generalization to more flexible mean functions (non-parametric)
 He & Yi, 2009

Composite likelihood

Properties

Questions •0000 A few references

Questions about inference

- When Is composite marginal likelihood preferred to conditional composite likelihood ? (always?)
- why is composite likelihood seemingly so efficient?
- where are the exceptions?
- model classes that lead to asymptotic efficiency?

Mardia et al, 2009

role of sufficiency?

Composite likelihood

Properties

Questions

A few references

... questions

- asymptotic theory: is composite likelihood ratio test preferable to Wald-type test?
- estimation of Godambe information J = varU(θ) jackknife, bootstrap, empirical estimates
- estimation of eigenvalues of $(H^{\psi\psi})^{-1}G^{\psi\psi}$

Composite likelihood

Properties

Questions

A few references

... questions

- approximation of distribution of $w(\psi) \sim \sum \mu_a Z_a^2$
- Satterthwaite type? ($f\chi_d^2$): Geys et al, 1999
- saddlepoint approximation?: Kuonen, 2004
- direct adjustment?
 Pace et al., 2009
- large p, small n asymptotics: time series, genetics

Composite likelihood

Properties

Questions

A few references

... questions

compatibility

Yi, CMS talk

Parner, 2001

- can composite likelihood be used for modeling when no multivariate distribution exists that is compatible with margins?
- e.g. extreme values, survival data
- Hammersley-Clifford theorem for conditional distributions
- analogue for marginal distributions?
- Does theory of multivariate copulas help in understanding this?
- Example: pair specific parameters

$$CL(\omega) = \prod_{i} \prod_{r < s} f(y_{ir}, y_{is}; \omega_{rs}), \quad \theta = A\omega_{rs}$$

Molenberghs & Verbeke, 2005; Fieuws et al, 2007

Composite likelihood

Properties

Questions

A few references

... questions

- How do we ensure identifiability of parameters? Yi, CMS talk
- Relationship to modelling via GEE?
- how to investigate robustness systematically?
- how to make use of objective function
- design of composite likelihoods Lindsay, Yi & Sun, 2009
- can we really think beyond means and covariances in multivariate settings?

Composite likelihood

Properties

Questions

A few references

References

- Varin, C., Reid, N. and Firth, D. (2009). An overview of composite likelihood methods.
- Varin, C. (2008) Adv. Stat. Anal. 92, 1–28. www.dst.unive.it/~ sammy
- Lindsay, B. (1988) Contemp. Math. 80 221–240
- Cox, D.R. and Reid, N. (2004) Biometrika 91 729–737
- Molenberghs, G. and Verbeke, G. (2005) Models for discrete longitudinal data. Springer-Verlag. [Ch. 9]
- ▶ Hjort and Varin (2008) Scand. J. Statistics 35, 64–82
- ▶ Joe and Lee (2009) J Multiv. Anal. 100 670–685

Special issue of Statistica Sinica 2010
http://www3.stat.sinica.edu.tw/statistica/