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Abstract
Priors for which Bayesian and frequentist inference agree, at least

to some order of approximation, are called ’matching priors’, and have
been proposed as candidates for noninformative priors in Bayesian
inference. We give an overview of the original work of Welch and
Peers and some more recent developments.

1 Introduction

In the context of parametric inference, a matching prior is a prior for which
posterior probability statements about the parameter also have an interpre-
tation as confidence statements in the sampling model. The idea appears
to have been proposed first by Lindley (1958). There have been several at-
tempts to develop matching priors, starting with Welch and Peers (1963).
Matching priors in principle hold the promise of providing a possible fre-
quentist/Bayesian compromise and of providing default priors for routine
use in Bayesian inference. This is attractive from some frequentist points of
view because the Bayesian approach to inference provides a simple way to
eliminate nuisance parameters, and typical frequentist approaches are rather
more complicated. Default priors are attractive from some Bayesian points of
view as they might be expected to be more widely accepted than subjective
priors. In addition the inference from a default prior can be compared to
that from priors developed otherwise, as a possible check on the robustness
of the inference to the prior.

We consider here priors that lead to approximate matching, to some order
of approximation in the sample size n. The terminology in the literature
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is not standardized, and we follow here the version used in Mukerjee and
Reid (1999): we call a prior first order matching if it ensures approximate
frequentist validity of a Bayesian posterior credible set with margin of error
O(n−1), and second order matching if it does so with a margin of error of
O(n−3/2). Since the posterior distribution is typically asymptotically normal
for any choice of prior, it is only at the O(n−1) term of the asymptotic
expansion that matching leads to a class of priors. The relevant asymptotic
expansions are typically in powers of n−1/2, so first order matching actually
involves the second order term in the expansion.

Welch and Peers (1963) showed that Jeffreys’ prior is the unique first
order matching prior in sampling from a model with a scalar parameter.
Peers (1965) showed that this result does not extend to models with vector
parameters. There have been a number of results established that are at
least partial analogues of Welch and Peers for the vector parameter case, but
no single approach has emerged, and these more general matching priors can
usually be constructed only for particular models. In Section 2 we review
the results of Welch and Peers (1963) and Peers (1965), and also outline
the Edgeworth expansion technique used in these and following papers. In
Section 3 we review the various extensions that have been established in the
literature using this approach. There are a number of other approaches to
default priors, different from frequentist matching, and some of these are also
mentioned in Section 3.

In Section 4 we discuss a different approach, using recent results from the
development of higher order asymptotic approximations using saddlepoint
type expansions. This leads to a notion of strong matching, which requires
priors that are dependent on the data. Data dependent priors were developed
in the context of the transformed regression model by Box and Cox (1964),
and Wasserman (2000) discusses the necessity of data dependent priors in
mixture models. It seems likely that data dependent priors are needed in a
general approach to matching priors.

For a review of matching priors from a different perspective, with more
emphasis on the underlying partial differential equations, see Ghosh and
Mukerjee (1998).
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2 The Welch-Peers approach to matching pri-

ors

We assume throughout that Y = (Y1, . . . , Yn) is a sample of independent,
identically distributed, observations with joint density f(y|θ), where θ ∈ Rk.
We assume that we have a prior π(θ), and when k = 1 we denote by θ(1−α)(y)
the (1− α) posterior quantile defined by

Prθ|Y {θ ≤ θ(1−α)(y)|y} =
∫ θ(1−α)(y)

−∞
π(θ|y)dθ = 1− α, (1)

where π(θ|y) is the posterior density of θ, given y.
If the following were also true

PrY |θ{θ(1−α)(Y ) ≥ θ} =
∫

1{θ(1−α)(y) ≥ θ}f(y|θ)dy = 1− α (2)

then Bayesian and frequentist inference for θ, in the form of one-sided pos-
terior limits or one-sided confidence limits, would be in perfect agreement.
This is the case in a simple location model f(y|θ) = f0(y − θ) when π(θ) is
constant, but of course we cannot expect the result to hold more generally.
However, Welch and Peers (1963) proved that if we require instead

PrY |θ{θ(1−α)(Y ) ≥ θ} = 1− α+O(n−1), (3)

there is a unique prior for which (3) holds, given by π(θ) ∝ {i(θ)}1/2, where
i(θ) is the expected Fisher information in a single observation

i(θ) = n−1EY |θ{−∂2 log f(y|θ}/∂θ2).

This prior is improper, as are all matching priors, but most Bayesian ap-
proaches permit improper priors as long as the posterior is proper.

It is useful to review the steps in the establishment of this result in order
to see the limitations that arise in trying to extend it. We denote the log-
likelihood function based on the sample y by

`(θ) = `(θ; y) = log f(y|θ).

The posterior cumulative distribution function, Π(θ), is given by

Π(θ|y) =
∫ θ exp{`(t)}π(t)dt∫

exp{`(t)}π(t)dt
.
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Using the results of Johnson (1970), we can obtain an Edgeworth expansion
for the posterior distribution, although it is convenient to write this as an
expansion for the posterior of

√
n(θ−θ̂)/σ̂, where θ̂ is the solution to `′(θ̂) = 0

and

σ̂−2 = j(θ̂) = − 1

n

∂2`(θ; y)

∂θ2

∣∣∣∣∣
θ=θ̂

is the observed per-observation Fisher information. A Cornish-Fisher in-
version of the resulting expansion leads to an expansion for the posterior
quantile of the form

θ(1−α)(y) = θ̂ +
σ̂√
n

[zα +
1√
n
{(z2

α + 2)A3(y) + A1(y)} (4)

+
1

n
u(zα, π, y) + . . .],

where zα is the (1 − α) quantile of the standard normal distribution. Ex-
pressions for A3, A1 and u are given explicitly in Mukerjee and Reid (1999,
(2.8)). The probability on the left hand side of (3) is computed from (4) and
turns out to have the expansion

1− α+
1√
n
φ(zα)T1(π, θ) +

1

n
zαφ(zα)T2(π, θ) + . . . (5)

where φ(·) is the standard normal density,

T1(π, θ) =
1

π(θ)

d

dθ
[{i(θ)}−1/2π(θ)], (6)

and the form of T2 can be obtained from Mukerjee and Dey (1993).
From (6) we see that T1 = 0, and the posterior quantile thus has frequen-

tist coverage 1 − α + O(n−1), if and only if π(θ) ∝ i1/2(θ). It is shown in
Welch and Peers (1963) ( see also Mukerjee and Ghosh (1997)) that for this
choice of prior, T2 = 0 if and only if

d

dθ

EY |θ{`′(θ)}3

{i(θ)}3/2
= 0 (7)

which is a condition on the model. Thus matching to the next order of
approximation can be achieved only in special cases.

The derivation in Welch and Peers (1963) is slightly different from that
outlined above, but they employed the same basic techniques. They required
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the exact posterior quantile (not our approximation given in (3)) to have
frequentist coverage 1 − α + O(n−1), by seeking a prior for which the pos-
terior cumulative distribution function Π(θ|y) is distributed as a uniform
(0, 1) random variable under the sampling model f(y|θ). They established
an asymptotic expansion for the moment generating function of Φ{Π(θ|y)}
(where Φ is the normal cumulative distribution function) and compared the
expansion to the moment generating function for a standard normal random
variable.

Exactly the same steps can be followed for a component of a vector pa-
rameter θ = (θ1, . . . , θk), using the marginal posterior. We define θ

(1−α)
1 (y)

by ∫ θ
(1−α)
1 (y)

−∞
πm(t|y)dt = 1− α

where πm(θ1|y) is the posterior marginal density for a single component.
Cornish-Fisher inversion of the Edgeworth expansion for the marginal pos-
terior distribution function leads to an expression for the posterior quantile
as

θ
(1−α)
1 (y) = θ̂1 +

σ̂11√
n
{zα +

1√
n
u1(zα, π, y) +

1

n
u2(zα, π, y) + . . .} (8)

where σ̂2
11 = j11(θ̂) is the (1, 1) component of the inverse of the observed

per observation Fisher information matrix, and expressions for u1 and u2 are
given in Mukerjee and Reid (1999, (2.8)). This leads to an expansion for

PrY |θ{θ(1−α)
1 (Y ) ≥ θ1} of the same form as (5), where T1 = 0 if and only if

∂

∂θa
{i11(θ)−1/2ia1(θ)π(θ)} = 0. (9)

In (9) iab(θ) is the inverse of the per observation expected Fisher informa-
tion matrix, and summation over a from 1 to k is implied. This result was
obtained by Peers (1965), using the method of Welch and Peers (1963).

Expression (9) can be simplified if we assume that θ1 is orthogonal to
(θ2, . . . , θk) with respect to expected Fisher information, i.e. i1a(θ) = 0 for
a = 2, . . . , k, in which case T1 = 0 if and only if

π(θ) ∝ g(θ2, . . . , θk){i11(θ)}1/2 (10)

where g(·) is an arbitrary smooth function. These priors were derived from
a slightly different approach in Tibshirani (1989), and a detailed discussion
and derivation is given in Nicolau (1993).

5



One might hope that a unique solution to π(θ) could be established by
applying (9) in turn to each component of θ, but the resulting set of k
differential equations will not in general be mutually consistent, as shown by
Peers (1965). This is apparent from (10) as well. While it is always possible
to find a reparametrization that orthogonalizes one component of θ to the
remaining components, it is not possible to find a single transformation that
orthogonalizes all the components to each other (Cox and Reid, 1987).

One approach to choosing from among the set of priors satisfying (10) is
to consider the next order term T2 in (5). It is shown in Mukerjee and Ghosh
(1997) that T2 = 0 if and only if

1

6
g(θ(2))

∂

∂θ1

{i11(θ)−3/2i1,1,1(θ)}+
∂

∂θa

∂

∂θb
{i11(θ)−1/2i11a(θ)i

ab(θ)g(θ(2))} = 0

where summation over a and b from 2 to k is implied, we have used the
notation θ(2) = (θ2, . . . , θk) and the third order per observation information
functions are

i11a(θ) =
1

n
EY |θ{

∂3`(θ)

∂θ1∂θ1∂θa
}

i1,1,1(θ) =
1

n
EY |θ{

∂`(θ)

∂θ1

}3.

These conditions involve both the prior, through g(θ(2)), and the model.
Mukerjee and Ghosh (1997) and Ghosh and Mukerjee (1998) give examples
where a prior satisfying the first order matching condition (8) also satisfies
T2 = 0, where there is a first order matching prior but no second order
matching prior, and where a class of first order matching priors is narrowed
down by adding the second order matching condition. Peers (1965) also noted
the impossibility, in general, of using the second order matching condition to
choose among priors satisfying the first order matching condition.
Example (Mukerjee and Ghosh (1997)): Suppose we are sampling from a
bivariate normal distribution with mean (µ1, µ2), variances σ2

1 and σ2
2, and

correlation coefficient ρ. Define the parameter of interest θ1 to be the regres-
sion parameter ρσ2/σ1, and let θ2 = σ2

2(1−ρ2), θ3 = σ2
1, θ4 = µ1 and θ5 = µ2.

The first order matching prior is of the form

π(θ) ∝ g(θ2, θ3, θ4, θ5)(
θ3

θ2

)1/2,

and invoking the second order matching criterion leads to the class of priors

π(θ) ∝ g(θ3, θ4, θ5)θ
−1
2 .
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3 Other matching criteria

In view of the general non-existence of Welch-Peers type matching priors,
several other approaches have been investigated. We give a very brief sum-
mary here. The review paper by Ghosh and Mukerjee (1998) provides more
detail, along with a number of examples.

Instead of asking for the posterior quantile to have an interpretation as
a confidence bound, we might work instead with the posterior distribution
function directly. Consider

Π(w|Y ) = Prθ|Y {
√
n(θ1 − θ̂1)/σ̂11 ≤ w|Y }.

The frequentist counterpart of this distribution function is

FY |θ(w) = PrY |θ{
√
n(θ1 − θ̂1)/σ̂11 ≤ w}.

The former quantity is random, but we might define matching by

EY |θΠ(w|Y ) = FY |θ(w) +O(n−j)

for any fixed w. This approach was discussed in Mukerjee and Ghosh (1997),
where they showed in particular that to first order (j = 1), this leads to
the same condition as the Welch-Peers approach (9), but to the next order
(j = 3/2), this leads to a pair of equations T3(π, θ) = 0, T4(π, θ) = 0
as opposed to the single equation T2(π, θ) = 0 arising in the Welch-Peers
approach (see Mukerjee and Ghosh, 1997, (2.13)). However, for the bivariate
normal example discussed above, this leads to the same class of priors as
quantile matching, even to second order.

Mukerjee and Reid (1999) considered matching under ‘alternative’ values,
defined by requiring that

EY |θPrθ|Y {θ1 + δ(i11/n)1/2 ≤ θ
(1−α)
1 (Y )|Y }

= PrY |θ{θ(1−α)
1 (Y ) ≥ θ1 + δ(i11/n)1/2}+O(n−j)

and showed that to O(n−1) this again requires T1 = 0, as at (9), and to
O(n−3/2) requires a more stringent set of conditions.

In the bivariate normal example this leads to the second order matching
priors

π(θ) ∝ g(θ4, θ5){(θ2θ3)}−1.
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Mukerjee and Reid (2001) generalized the Welch-Peers results to quantiles
of an arbitrary one-dimensional function h(θ), and found conditions under
which the posterior quantile for h(θ) has the correct frequentist coverage to
O(n−1) and O(n−3/2). By way of illustration, the generalization of (9) to this
setting is (see also Datta and Ghosh (1995))

∂

∂θj

{iab(θ) ∂h
∂θa

∂h

∂θb

}−1/2

ijc(θ)
∂h

∂θc
π(θ)

 = 0,

where again there is an implied summation over a, b and c. In Mukerjee
and Reid (2001) this was used to match Bayesian and frequentist tolerance
limits, by choosing for h(θ) the 1− β quantile of the distribution function of
Yi. This matching criterion is more stringent than those derived above, and
depends more strongly on the model.

The distribution-function matching approach described above used the
standardized maximum likelihood estimate as the basis for the distribution,
but it is also possible to consider matching the distribution function for the
standardized score statistic or the generalized log-likelihood ratio statistic,
or indeed other statistics that may be derived from quite different consider-
ations. A survey of many of these matching criteria is given in Ghosh and
Mukerjee (1998, Sec.4).

Matching prediction limits leads to quite different expansions and crite-
ria; details are provided in Datta et al. (2000). Sweeting (2001) discusses
the role of matching priors for two-sided confidence intervals in scalar pa-
rameter models. For a comparison of bayesian and frequentist approaches to
prediction from another point of view, see Smith (1999).

4 Strong matching

The approach based on Edgeworth expansions does not generalize very well to
problems with nuisance parameters, in the sense that there is no obvious cri-
terion that works well in general models. Each has to be approached on a case
by case basis. In retrospect this is perhaps not too surprising, since a gener-
ally acceptable approach would lead to frequentist inference for component
parameters that was relatively straightforward, and to a Bayesian approach
to prior selection in complex models that was also relatively straightforward,
and both of these problems are the most difficult in their respective schools
of inference.
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Fraser and Reid (1996) developed a notion of strong matching, based on
the approach to higher order asymptotic inference derived from the likeli-
hood function developed by Barndorff-Nielsen, Fraser, and others, and most
closely related to the saddlepoint or Laplace approximation rather than the
Edgeworth approximation.

The basis of the frequentist approximation is the following approximation
to the p-value for inference about θ1:

PrY |θ{r(θ1, Y ) ≤ r(θ1, y)} .
= Φ(r) + φ(r)

(
1

r
− 1

qF

)
(11)

where
r = r(θ1, y) = ±

√
[2{`p(θ̂1)− `p(θ1)}], (12)

`p(θ1) = `{θ1, θ̃(2)(θ1)} is the profile log likelihood function, θ̃(2) = θ̃(2)(θ1)
is the restricted maximum likelihood estimate of θ(2), and qF = qF (θ1, y) is
a maximum likelihood-type statistic with a relatively complicated definition
which is derived in detail in Fraser, Reid and Wu (1999). There is a Bayesian
version of approximation (11) as well:

Prθ|Y {r(Θ1, y) ≥ r(θ1, y)|y} .
= Φ(r) + φ(r)

(
1

r
− 1

qB

)
(13)

where r is given by (12), qB = qB (θ1, y) is a type of score statistic:

qB = `1(θ1, θ̃(2))

{
|̂θθ|

|j22(θ1, θ̃(2))|

}−1/2
π(θ̂ )

π(θ1, θ̃(2))
(14)

where `1 is the score function for θ1, j22 is the θ(2) component of the observed
information matrix.

For completeness we provide the expression for qF , which relies on a
reparametrization ϕ = ϕ(θ), discussed in Fraser, Reid and Wu (1999):

qF = {χ(θ̂ )− χ(θ1, θ̃(2))}
{

|̂ϕϕ|
|j(22)(θ1, θ̃(2))|

}1/2

(15)

where the notation j(22) refers to the information submatrix corresponding
to ϕ(2), and χ plays the role of the parameter of interest, defined by χ(θ) =

eTψϕ(θ), where eψ = ψϕ′(θ̂ψ)/|ψϕ′(θ̂ψ)| , and ψϕ is the derivative of the first
component of the inverse transformation θ(ϕ).
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Setting qB = qF ensures that to the order of approximations (11) and
(13), Bayesian and frequentist inference limits agree. Since the Bayesian
version depends on the prior, this determines in principle the form of the
prior for the parameter of interest θ1. In the bivariate normal example of
section 2 this leads to a flat prior for θ1. The strong matching prior for the
full parameter is obtained by constructing an approximate location model,
as described in Section 8 of Fraser and Reid (2001). Recent unpublished
work of Fraser and Yi consider the construction of an approximate marginal
likelihood for θ1, thus avoiding the construction of any prior for the nuisance
parameer.

Strong matching priors are dependent on the data, and in particular on
the observed information, so do not lead to noninformative Bayesian inference
in the conventional sense. It also has the disadvantage that the simplicity
of Bayesian marginal inference is essentially lost in this approach. Approx-
imations (11) and (13) have relative error O(n−3/2) in n−1/2 neighborhoods
of the maximum likelihood estimate, so strong matching provides second or-
der matching of confidence limits. Fraser and Reid (2001) discuss a simpler
approach that provides matching to O(n−1), and still uses a data dependent
prior.

The emergence of a data dependent prior in attempts to match Bayesian
and frequentist inference to second order seems to be inevitable; this was
first discussed in the scalar parameter case in Pierce and Peters (1994), and
is explored in more detail in Sweeting (2001). Sweeting (2001) also discusses,
in the scalar parameter case, matching prediction limits, and matching two
sided confidence limits. Both of these approaches lead to a different asymp-
totic result, for slightly different reasons. In considering two-sided confidence
limits the forms of the expansions are such that the O(1/

√
n) terms in each

tail cancel. The leading term in establishing even one-sided prediction limits
is also O(1/n).

In more complex models, data dependent priors have emerged in two quite
different contexts. In Box and Cox (1964), Bayesian inference is considered
for the model

y
(λ)
i = x′iβ + σei (16)

where the errors ei are assumed to be independent standard normal random
variables, and

y
(λ)
i =

{
yλ−1
λ

if λ 6= 0
log y if λ = 0

.
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Writing θ = (β, σ, λ), Box and Cox (1964) argue that the most natural
noninformative prior is

π(θ)dθ ∝ dβ
dσ

σ

dλ

(ẏλ−1)k

where k is the dimension of β and ẏ is the geometric mean of the observations.
Essentially some information is needed on the scale of the observations, in
order to sensibly assign a vague prior to the transformation parameter.

Wasserman (2000) considers matching priors in the mixture model

f(y; θ) =
1

2
φ(y) +

1

2
φ(y − θ)

where φ is the standard normal density. He shows that any fixed improper
prior must lead to an improper posterior, and that no fixed prior can give
matching of one-sided intervals to O(n−1), but shows that the following data
dependent prior solves both problems

π(θ) ∝ {i(θ)}1/2c(θ; y)

where

c(θ; y) = 1−
∏{

1 +
φ(yi − θ)

φ(yi)

}
which in effect is a simple way to delete from the likelihood function the
sample that comes entirely from the first part of the mixture distribution, and
hence gives no information about θ, and use Jeffreys’ prior for this pseudo-
likelihood function. An analogous result is derived for a mixture of k normal
distributions with differing means and variances. As discussed in Wasserman
(2000), Diebolt and Robert (1994) used a similar idea with conjugate priors.

5 Conclusion

From several converging points of view, data dependent priors appear to be
needed in a frequentist approach to Bayesian inference. They are possibly
even needed in a Bayesian approach using default priors, as all default priors
involve model averaging (through the calculation of expected information),
and thus do not permit conditioning on any ’obvious’ ancillaries.

There are other approaches to default or noninformative priors that do
not involve matching frequentist limits or confidence bounds. A good review
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is given in Kass and Wasserman (1996), and there is also a default Bayes
web page at www.stat.missouri.edu/bayes/.

The most prominent alternative default prior is Berger and Bernardo’s
reference prior, which is noninformative in the sense of maximizing the
Kullback-Liebler distance between the prior and the posterior, or equiva-
lently minimizing the Kullback-Liebler distance between the likelihood func-
tion and the marginal distribution of the data. An accessible introduction to
reference priors is given in Kass and Wasserman (1996). Reference priors are
often first order matching in problems with nuisance parameters, but there
are now a number of examples described where the reference prior is not sec-
ond order matching (Garvan and Ghosh, 1997; Ghosh and Kim, 2001; Yin
and Ghosh, 2001). A data-dependent type of reference prior is developed in
Clarke and Yuan (2001).
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