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Background

» parametric model f(y;6), y < R™;0 e RY
» likelihood function L(6; y) o f(y;0)
» why likelihood?

» maximum likelihood estimator is consistent
and asymptotically efficient

> 0~ N{0,j"(0)} j(8) = —£"(6); £(8) = log L(6)

» likelihood ratio, or log-likelihood difference, captures
asymmetry in the model

> w(0) = 2{0(0) — £(0)} ~ x5

» combine with prior for Bayesian inference

» EM algorithm for computing maximum likelihood estimate

Composite Likelihood ~ UCL, November 2012



... background

» warning: likelihood methods need regularity conditions
on the model

» can have poor finite sample behaviour for large
numbers of parameters

» priors also very tricky with large numbers of parameters
» finite sample corrections may be advisable

» difficulty with construction of the likelihood function

» inversion of large covariance matrices

intractable integrals; awkward normalization constants
combinatorial explosion

nuisance components difficult to specify

» lower dimensional marginal or conditional distributions
may be tractable

v VvYyy

» combine these to form composite likelihood
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Terminology
» Model Y ~ f(y;0), yeR™ OcRP

» Events Ay,...,Ax; “sub-densities” f(y € Ax; 0)
» Composite log-likelihood
K K
cl(B;y) = wilogf(y € Ak 6) = wi L(6;y € Ag)
k=1 i=1
» Wy weights to be determined
» composite likelihood is a type of:

» pseudo-likelihood (spatial modelling);

» quasi-likelihood (econometrics);

» limited information method (psychometrics)
> ...
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Example: spatial generalized linear models
» generalized linear geostatistical models
E{Y(s) | u(s)} = g{x(s) B+ u(s)}, seScCRId>2

Diggle & Ribeiro, 2007
» random intercept u is a realization of a stationary GRF,
mean 0, covariance

cov{u(s),u(s)} = o?p(s — §'; a)

» nobserved locations y = (y1, ..., ¥n) With y; = y(s))
» likelihood function

n
L(6;y) =/ Hf(y,- | u;;0) f(u;0) duy ... dup
Hi=t MVN(0,E)

» no factorization into lower dimensional integrals, as with
independent observations from the “usual” GLMMs
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. spatial generalized linear models
n
L(6;y) = / H f(yi | ui; 6)f(u; 0)duy ... du
R7 i

» simulation methods, MCMC, MCEM, etc., costly Oo(n?)
» pairwise likelihood

Lar®y) = ] /fy,\u,, (3 | w(6)f(ui, uj; 0)dudy;
{(i.j))eSs}

Heagerty & Lele (1998), Varin (2008)

» comments:
» product of bivariate integrals
» accurate quadrature approximations available
» use only close pairs: S5 = {(/,/) : ||si — sj|| < 0}
» computational cost O(n)
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Composite conditional likelihoods
» Besag (1974) pseudo-likelihood

m
Lo(0:y) =[] f(yr | {¥s : ys neighbour of y;;0)

r=1
» pairwise conditional

Le(0:y) =TT fr | ysi60)
r=1s=1

Molenbergs & Verbeke (2005); Mardia et al. (2009)
» full conditional

m
c(6:y) =H (vr | Y=ry: 6

» time series .
Le(0:y) = [T fr | ye1:6)
r=1
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Composite marginal likelihoods

» independence likelihood

Ling(0; ) = [ [ f(vr: 0)

Chandler & Bate (2007)
» pairwise likelihood

m m
Lpair(0;y) = H H f(yr, ¥s: 0)

Cox & Reid (2004); Varin (2008)
» pairwise differences

Lairr(0;y) = H H f(y

r=1 s=r+1
Curriero & Lele (1999)
» optimal combination of L;,y and Ly
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Derived quantities
» composite log-likelihood
cl(8;y) =log Lo(0; y) = S q wiclk(6; y)

» composite score
u(8; ) = Vocl(8: ¥) = gy WkVoli(8:y) E{u(b;Y)} =0

» sensitivity matrix H() = Eg{—Vu(6; Y)}
» variability matrix J(0) = varp{u(0; Y)}

» Godambe information
G(0) = H(6)J 1 (0)H(0) H(0) # J(0)
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Inference
» Sample y1, ..., y, independent from f(y- 0) or fi(y; 0)

» Composite log-likelihood c/(6; y) = Z cl(0;y))

> maximum composite likelihood estlmator .
OcL = argmaxcl(6; y) u(fer;y)=0

» Asymptotic consistency, normality

Jn(fo. —0) -5 Np{0,G'(6)}, n— oo, mfixed

» if nfixed and m — oo, need assumptions on replication

» examples include time series and spatial data
decaying correlations

» G(0) = HO)J 1 (0)H(0)
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... inference

v

v

v

v

v

0=(,N), veRI,AeRPI
inference based on maximum likelihood estimator

feL ~ Nof0,G " (Bc)} = dor ~ Nofv, G™(OcL)}
CL log-likelihood ratio statistic
- " c
wor () = 2{ct(fcr) — cl(fo)}y — 2Py NZF

Ocr = {¥, A\cL ()}, constrained mle
Z~N(0,1) ) eigenvalues of (HY¥)~1GY%  Kent (1982)

Composite Likelihood  UCL, November 2012



... inference
» O, not fully efficient unless G(0) = H(0)J ' (0)H(0)

095

090

085

»

» c/(0) is not a log-likelihood function

loglknorm

mmmmm
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... inference

efficiency of ¢ can be pretty high, in many applications
careful choice of weights can improve efficiency of

in special cases

weights can be used to incorporate sampling information,
including missing data Vi, 12, Molenberghs, 12, Briollais & Choi,12

vy

v

» wce (1) can be re-scaled to ~ x5
Chandler & Bate (2007), Salvan et al. 11, 12 (wip)
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Figure 1. Equicorrelated multivariate normal model. Confidence regions
with level 0.95 for (p,o?), with p known and equal to zero, for a simulated
sample with n = 5, ¢ = 30, and true parameter value p = 0, p = 0.5, and
a? = 1. In each plot, the solid line corresponds to w(#), while the dashed
line corresponds to: () w*(8); (b) w*(6): () pu(8),yys (d) pw(d),; (c)
pwl(® - () pw(6)
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Model selection
» Akaike Information Criterion
AlCc, = —2¢ct"(fc )+ 2 tr{J(@O)H'(H)

Varin & Vidoni (2005)
» Bayesian Information Criterion

BICc = —2¢t"(0¢;) + log(n) tr{J(O)H~1 ()}

Gao & Song (2010)
» effective number of parameters

tr{H()G'(0)} = tr{J(O)H ' (0)}

G(0) = H(0)JT(0)H(9)
» not exactly, if wy — ¢ wy, Vk

tr(HG™ ') — ctr(HG™ )

Ng, 12
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Some surprises

» Y~ N(H,Z) }aCL:ﬁviCL:

—_ ™M>
A

]
> P
> Y ~N(ul,02R), R=|

p ... P 1
> o =10, G(O)=i(6), G(6) = H(6)J " (6)H(0)

H(0) = var(Score), J=

E(VyScore)
ﬁ cL # pravar(per) > a.var(p)

» efficiency improvement, nuisance parameter is unknown

Mardia et al (2008); Xu, 12
» CL can be fully efficient, even if H(0) # J(0)
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. Some surprises

» Godambe information G(6) can decrease as more
component CLs are added

pairwise CL can be less efficient than independence CL

v

v

this can’t always be fixed by weighting Xu, 12

v

parameter constraints can be important
» Example: binary vector Y,
ex i + + Oy;
P(Y; = ¥, Ye = yi) o P(BY; + BYk + Oikiyx)

{1 +exp(BY; + Byk + O yi¥k)}
» this model is inconsistent

v

parameters may not be identifiable in the CL, even if they
are in the full likelihood vi, 12
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Applications: spatial and space-time data

>

>

>

conditional approaches seem more natural
condition on neighbours in space
condition on small number of lags (in time)

some form of blockwise components often proposed
Stein et al, 04; Caragea and Smith, 07

fMRI time series Kang et al, 12
air pollution and health effects Bai et al, 12

» computer experiments: Gaussian process models Xi, 12
» spatially correlated extremes

» joint tail probability known

» joint density requires combinatorial effort (partial
derivatives)

» composite likelihood based on joint distribution of pairs,
triples seems to work well

Davison et al, (2012); Genton et al., 12, Ribatet, 12
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Spatial extremes

vV V.V v VY

vector observations (Xj;,..., Xg), i=1,...,n
example, wind speed at each of d locations
component-wise maxima Zi, . .., Zy; Z; = max(Xj, . .., Xjn)

Z; are transformed (centered and scaled)
general theory says

Pr(Z1 < zy,...,2q < zq) = exp{—V(z1,...,24)}

function V() can be parameterized via Gaussian process
models

example

V(z1,22) = zy'o{(1/2)a(h)+a '(h)log(zz/z1)} +
zy 'o{(1/2)a(h) + a ' (h)log(z1/22)}

Z(h) = (z1,2),Z(0) = (0,0),a(h) = h"Q " 'h
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... Spatial extremes

>

PI’(Z1 §Z1,...,Zd SZd) :exp{—V(z1,...,zd)}

to compute log-likelihood function, need the density
combinatorial explosion in computing joint derivatives
of V(+)

Davison et al. (2012, Statistical Science) used pairwise
composite likelihood

compared the fits of several competing models,
using AIC analogue described above

applied to annual maximum rainfall
at several stations near Zurich
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Davison et al, 2012

162 A.C. DAVISON, S. A. PADOAN AND M. RIBATET
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FIG. 1. Map of Switzerland showing the stations of the 51 rainfall gauges used for the analysis, with an insert showing the altitude. The 36
stations marked by circles were used to fit the models, and those marked with squares were used to validate the models. Data for the pairs of
stations with blue symbols appear in Figure 2.
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Davison et al, 2012

MODELING OF SPATIAL EXTREMES 175

4542
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Fic. 3. Maps of the (predictive) pointwise 25-year for rainfall from and max-stable
models. The iop and botiom rows show the lower and upper bounds of the 95% poinbwise credible/confidence inlervals. The middle row
shws the predictive pointwise posteriar mean and pointwise estimates. The left column: corresponds 1o the latent variable model assum-
ing Gamma(5,3) prior on .. The middle column assumes the less informative priors Ay ~ Camma(l, 100), A; ~ Gamma(1, 10) and
2 ~ Gamma(l, 10). The right column corresponds to the exiremal 1 copula model.
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Network tomography, Liang & Yu, 2003
» X = (Xi,..., Xm) network dynamics
e.g. traffic flow counts; node delays
» Y =(Y4,..., Ym) measurement vector m < n’
» Y =AX, Aknown routing matrix, entries 1 m x m’
» components X; are independent, with density £(-; 0;)

Y, 1101000

Yo [t 10010 0

: S . Va1 010010
(a) Y, 1010001
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... network tomography

» observations Yi,..., Y, Yi=AX

» composite likelihood constructed using all possible pairs of
rows of m x m’ routing matrix A

» requires only distributions of pairs Y;, Ys
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Fig.4. Link L, error norm averaged over 30 simulations. Solid line is MPLE,
dashed line is MLE, and dotted line is recursive algorithm. For each link, the
vertical bar shows the SD of L, error norm for the given link.



... applications

» time series — a case of large m, fixed n
» need new arguments re consistency, asymptotic normality
» consecutive pairs: consistent, not asy. normal
» AR(1): consecutive pairs fully efficient; all pairs terrible
(consistent, highly variable)
» MA(1): consecutive pairs terrible
Davis and Yau (2011)

» genetics: estimation of recombination rate
» somewhat similar to time series
» but correlation may not decrease with increasing length
» suggesting all possible pairs may be inconsistent

joint blocks of short sequences seems preferable

v

» linkage disequilibrium

» family based sampling
Larribe and Fearnhead (2011); Choi and Briollais, 12

Composite Likelihood  UCL, November 2012



... applications

» Gaussian graphical models Gao and Massam, 12

» symmetry constraints have a natural formulation in terms of
elements of concentration matrix
» conditional distribution of y; | y_j

» multivariate binary data for multi-neuron spike trains
Amari (IMS,12)

» CL as a working likelihood in ‘maximization by parts’
Bellio, 12

» latent variable models in psychometrics
Moustaki, 12, Maydeu-Olivares, 12

» many linear and generalized linear models with random
effects

» multivariate survival data
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What don’t we know?

vV v v VY

Design

marginal vs. conditional

choice of weights

down-weighting ‘distant’ observations
choosing blocks and block sizes
pause

> LAJncertainty estimation
» J(Oc,) = var{dct(0)/06}

need replication; need lots of replication

perhaps estimate G(f¢,) or var(d¢; ) directly —
bootstrap, jackknife

or estimate using ideas from higher-order asymptotic

approximations Fraser, 12
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... what don’t we know?

» Identifiability (1): does there exist a model compatible with
a set of marginal or conditional densities?

» Identifiability (2): what if different components are
estimating different parameters?

» Robustness: CL uses ‘low-dimensional’ information: is this
a type of robustness?
» find a class of models with same low-d marginals Xu, 12
» classical perturbation of starting model

(using copulas?) Joe, 12
» random effects models might be amenable to
theoretical analysis Jordan, 12
» asymptotic theory for large m (long vectors of responses),
small n

» relationship to Generalized Estimating Equations
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Aspects of robustness

» model robustness
» univariate and bivariate margins only for example
» means, variances, association parameters
» similar in flavour to generalized estimating equations GEE:
mean structure primary
» computational robustness
» composite log-likelihood functions are smoother than
log-likelihood functions
» easier to maximize, easier to work with
» especially in high dimension cases Liang and Yu (2003)
» robust to missing data mechanisms: Yi, Zeng and Cook (2010)
» access to multivariate distributions: e.g. mv extremes
Davison et al. (2012)
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Robustness of consistency

working model {f(y;0);0 € ©}
true model g(y)

Model Full Likelihood Composite Likelihood
Correctly specified || f(y;60) = g(y) | f(v:60) = gk(y) for all k
é\ML — 90 éCL — 90
Misspecified f(y;0) # 9(y), | &(y;0) # gk(y) for some k
éML — 97\</IL éCL — 0*

Top row — efficienc Ximing Xu, U Toronto
p Yy
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... robustness of consistency

working model {f(y;0);0 € ©}
true model g(y)

Model Full Likelihood Composite Likelihood
Correctly specified || f(y;60) = g(y) | f(V:60) = gk(y) for all k
é\ML — 90 é\CL — 90
Misspecified f(y;0) # 9(y), | &(y;0) # gk(y) for some k
éML — HX/IL éCL — 0*

Ximing Xu, U Toronto
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. robustness of consistency

>

example (Andrei and Kendziorski, 2009):

Yi ~ N(u1,0%), Yo ~ N(ug, 03), € ~ N(0,1)
Ys=Yi+ Yo+ bYiYo+e

full likelihood for multivariate normal is a mis-specified
model, b =0

composite conditional likelihood based on normal
distribution for (Y3 | Y2, Y1) — consistent estimate of b
example (Arnold and Xu):

F(Y) = ®p( Vi, ) + gl D)IT IV < 1))
sub-distributions of dimension k < p are multivariate
normal

pairwise likelihood estimator nearly identical to mle
assuming incorrect Np(u; ) model
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Some dichotomies

» conditional vs marginal

» pairwise vs everything else

» unstructured vs time series/spatial
» weighted vs unweighted

» “it works” vs “why does it work?” vs “when will it not work”
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