Composite Likelihood

Nancy Reid

November 22, 2012

with Cristiano Varin
and thanks to Don Fraser, Grace Yi, Ximing Xu
Background

- parametric model \(f(y; \theta), \quad y \in \mathbb{R}^m; \theta \in \mathbb{R}^d \)
- likelihood function \(L(\theta; y) \propto f(y; \theta) \)
- why likelihood?

- maximum likelihood estimator is consistent and asymptotically efficient
 \[
 \hat{\theta} \sim N\{\theta, j^{-1}(\hat{\theta})\}
 \]
 \[
 j(\theta) = -\ell''(\theta); \ell(\theta) = \log L(\theta)
 \]

- likelihood ratio, or log-likelihood difference, captures asymmetry in the model
 \[
 w(\theta) = 2\{\ell(\hat{\theta}) - \ell(\theta)\} \sim \chi^2_d
 \]

- combine with prior for Bayesian inference

- EM algorithm for computing maximum likelihood estimate
... background

- warning: likelihood methods need regularity conditions on the model
- can have poor finite sample behaviour for large numbers of parameters
- priors also very tricky with large numbers of parameters
- finite sample corrections may be advisable

- difficulty with construction of the likelihood function
 - inversion of large covariance matrices
 - intractable integrals; awkward normalization constants
 - combinatorial explosion
 - nuisance components difficult to specify

- lower dimensional marginal or conditional distributions may be tractable
- combine these to form composite likelihood
Terminology

- Model $Y \sim f(y; \theta)$, $y \in \mathbb{R}^m$, $\theta \in \mathbb{R}^p$

- Events A_1, \ldots, A_K; "sub-densities" $f(y \in A_k; \theta)$

- Composite log-likelihood

$$c\ell(\theta; y) = \sum_{k=1}^{K} w_k \log f(y \in A_k; \theta) = \sum_{i=1}^{K} w_k \ell(\theta; y \in A_k)$$

- w_k weights to be determined

- composite likelihood is a type of:
 - pseudo-likelihood (spatial modelling);
 - quasi-likelihood (econometrics);
 - limited information method (psychometrics)
 - ...
Example: spatial generalized linear models

- generalized linear geostatistical models
 \[\mathbb{E}\{ Y(s) \mid u(s) \} = g\{ x(s)^T \beta + u(s) \}, \quad s \in S \subset \mathbb{R}^d, \; d \geq 2 \]
 Diggle & Ribeiro, 2007

- random intercept \(u \) is a realization of a stationary GRF, mean 0, covariance
 \[\text{cov}\{ u(s), u(s') \} = \sigma^2 \rho(s - s'; \alpha) \]

- \(n \) observed locations \(y = (y_1, \ldots, y_n) \) with \(y_i = y(s_i) \)

- likelihood function
 \[L(\theta; y) = \int_{\mathbb{R}^n} \prod_{i=1}^n f(y_i \mid u_i; \theta) \underbrace{f(u; \theta) \; du_1 \ldots du_n}_{\text{MVN}(0,\Sigma)} \]

- no factorization into lower dimensional integrals, as with independent observations from the “usual” GLMMs
... spatial generalized linear models

- \(L(\theta; y) = \int_{\mathbb{R}^n} \prod_{i=1}^{n} f(y_i \mid u_i; \theta) f(u; \theta) du_1 \ldots du_n \)

- simulation methods, MCMC, MCEM, etc., costly \(O(n^3) \)

- pairwise likelihood

\[
L_{\text{pair}}(\theta; y) = \prod_{\{(i,j) \in S_\delta\}} \int_{\mathbb{R}^2} f(y_i \mid u_i; \theta) f(y_j \mid u_j(\theta) f(u_i, u_j; \theta) du_i du_j
\]

- comments:
 - product of bivariate integrals
 - accurate quadrature approximations available
 - use only close pairs: \(S_\delta = \{(i, j) : \|s_i - s_j\| < \delta\} \)
 - computational cost \(O(n) \)
Composite conditional likelihoods

- Besag (1974) pseudo-likelihood
 \[
 L_C(\theta; y) = \prod_{r=1}^{m} f(y_r \mid \{y_s : y_s \text{ neighbour of } y_r; \theta\})
 \]

- pairwise conditional
 \[
 L_C(\theta; y) = \prod_{r=1}^{m} \prod_{s=1}^{m} f(y_r \mid y_s; \theta)
 \]
 Molenbergs & Verbeke (2005); Mardia et al. (2009)

- full conditional
 \[
 L_C(\theta; y) = \prod_{r=1}^{m} f(y_r \mid y_{(-r)}; \theta)
 \]

- time series
 \[
 L_C(\theta; y) = \prod_{r=1}^{m} f(y_r \mid y_{r-1}; \theta)
 \]
Composite marginal likelihoods

- independence likelihood

\[L_{\text{ind}}(\theta; y) = \prod_{r=1}^{m} f(y_r; \theta) \]

Chandler & Bate (2007)

- pairwise likelihood

\[L_{\text{pair}}(\theta; y) = \prod_{r=1}^{m} \prod_{s=r+1}^{m} f(y_r, y_s; \theta) \]

Cox & Reid (2004); Varin (2008)

- pairwise differences

\[L_{\text{diff}}(\theta; y) = \prod_{r=1}^{m-1} \prod_{s=r+1}^{m} f(y_r - y_s; \theta) \]

Curriero & Lele (1999)

- optimal combination of \(L_{\text{ind}} \) and \(L_{\text{pair}} \)
Derived quantities

- **composite log-likelihood**
 \[c\ell(\theta; y) = \log L_C(\theta; y) = \sum_{i=1}^{K} w_k \ell_k(\theta; y) \]

- **composite score**
 \[u(\theta; y) = \nabla_\theta c\ell(\theta; y) = \sum_{k=1}^{K} w_k \nabla_\theta \ell_k(\theta; y) \quad E\{u(\theta; Y)\} = 0 \]

- **sensitivity matrix** \(H(\theta) = E_\theta \{-\nabla_\theta u(\theta; Y)\} \)

- **variability matrix** \(J(\theta) = \text{var}_\theta \{u(\theta; Y)\} \)

- **Godambe information**
 \[G(\theta) = H(\theta)J^{-1}(\theta)H(\theta) \quad H(\theta) \neq J(\theta) \]
Inference

- Sample y_1, \ldots, y_n independent from $f(y; \theta)$ or $f_i(y; \theta)$
- Composite log-likelihood $c\ell(\theta; y) = \sum_{i=1}^{n} c\ell(\theta; y_i)$
- Maximum composite likelihood estimator
 $\hat{\theta}_{CL} = \arg\max c\ell(\theta; y)$
 $u(\hat{\theta}_{CL}; y) = 0$
- Asymptotic consistency, normality
 $\sqrt{n}(\hat{\theta}_{CL} - \theta) \xrightarrow{\mathcal{L}} N_p\{0, G^{-1}(\theta)\}, \ n \to \infty, \ m \text{ fixed}$
- If n fixed and $m \to \infty$, need assumptions on replication
- Examples include time series and spatial data with decaying correlations
- $G(\theta) = H(\theta)J^{-1}(\theta)H(\theta)$
... inference

- \(\theta = (\psi, \lambda) , \quad \psi \in \mathbb{R}^q , \lambda \in \mathbb{R}^{p-q} \)
- inference based on maximum likelihood estimator

\[
\hat{\theta}_{CL} \sim N_p\{ \theta , G^{-1}(\hat{\theta}_{CL}) \} \implies \hat{\psi}_{CL} \sim N_q\{ \psi , G^{\psi\psi}(\hat{\theta}_{CL}) \}
\]

- CL log-likelihood ratio statistic

\[
w_{CL}(\psi) = 2\{ c_\ell(\hat{\theta}_{CL}) - c_\ell(\tilde{\theta}_{CL}) \} \overset{L}{\to} \sum_{j=1}^{p} \lambda_j Z_j^2
\]

- \(\tilde{\theta}_{CL} = \{ \psi, \hat{\lambda}_{CL}(\psi) \} \), constrained mle
- \(Z_j \sim N(0,1) \quad \lambda_j \) eigenvalues of \((H^{\psi\psi})^{-1} G^{\psi\psi} \) Kent (1982)

- \(G(\theta) = H(\theta)J^{-1}(\theta)H(\theta) \)
... inference

- $\hat{\theta}_{CL}$ not fully efficient unless $G(\theta) = H(\theta)J^{-1}(\theta)H(\theta) = i(\theta)$

- $c\ell(\theta)$ is not a log-likelihood function
... inference

- efficiency of $\hat{\theta}_{CL}$ can be pretty high, in many applications
- careful choice of weights can improve efficiency of $\hat{\theta}_{CL}$ in special cases
- weights can be used to incorporate sampling information, including missing data Yi, 12, Molenberghs, 12, Briollais & Choi, 12

- $w_{CL}(\psi)$ can be re-scaled to $\sim \chi_q^2$

 Chandler & Bate (2007), Salvan et al. 11, 12 (wip)
Figure 1. Equicorrelated multivariate normal model. Confidence regions with level 0.95 for (ρ, σ^2), with μ known and equal to zero, for a simulated sample with $n = 5, q = 30$, and true parameter value $\mu = 0, \rho = 0.5$, and $\sigma^2 = 1$. In each plot, the solid line corresponds to $w(\theta)$, while the dashed line corresponds to: (a) $w^c(\theta)$; (b) $w^u(\theta)$; (c) $pw(\theta)_{INV}$; (d) $pw(\theta)_1$; (e) $pw(\theta)_{GR}$; (f) $pw(\theta)_3$.
\[y \sim N(\mu_1, \sigma^2 R), \quad R_{rs} = \rho \]

Fraser, Nov 29 – direct construction
\[c\ell(\theta) = \sum w_k(\theta)\ell_k(\theta) \] for \(\chi^2 \) asymptotics
Model selection

- Akaike Information Criterion
 \[AIC_{CL} = -2c \ell^n(\hat{\theta}_{CL}) + 2 \ \text{tr}\{ J(\hat{\theta}) H^{-1}(\hat{\theta}) \} \]
 Varin & Vidoni (2005)

- Bayesian Information Criterion
 \[BIC_{CL} = -2c \ell^n(\hat{\theta}_{CL}) + \log(n) \ \text{tr}\{ J(\hat{\theta}) H^{-1}(\hat{\theta}) \} \]
 Gao & Song (2010)

- effective number of parameters
 \[\text{tr}\{ H(\theta) G^{-1}(\theta) \} = \text{tr}\{ J(\theta) H^{-1}(\theta) \} \]
 \[G(\theta) = H(\theta) J^{-1}(\theta) H(\theta) \]

- not exactly, if \(w_k \to c w_k, \forall k \)
 \[\text{tr}(HG^{-1}) \to c \text{ tr}(HG^{-1}) \]
 Ng, 12
Some surprises

- $Y \sim N(\mu, \Sigma)$ \hspace{1em} $\hat{\mu}_{CL} = \hat{\mu}, \hat{\Sigma}_{CL} = \hat{\Sigma}$

- $Y \sim N(\mu_1, \sigma^2 R)$, \hspace{1em} $R = \begin{pmatrix}
1 & \rho & \ldots & \rho \\
\rho & 1 & \ldots & \rho \\
\vdots & \ddots & \ddots & \vdots \\
\rho & \ldots & \rho & 1
\end{pmatrix}$

- $\hat{\theta}_{CL} = \hat{\theta}$, \hspace{1em} $G(\theta) = i(\theta)$, \hspace{1em} $G(\theta) = H(\theta)J^{-1}(\theta)H(\theta)$

- $H(\theta) \neq J(\theta)$ \hspace{1em} $H(\theta) = \text{var(Score)}$, \hspace{1em} $J = E(\nabla_\theta \text{Score})$

- $Y \sim (0, R)$: $\hat{\rho}_{CL} \neq \hat{\rho}$; $\text{a.var}(\hat{\rho}_{CL}) > \text{a.var}(\hat{\rho})$

- efficiency improvement, nuisance parameter is unknown
 \hspace{1em} (Mardia et al (2008); Xu, 12)

- CL can be fully efficient, even if $H(\theta) \neq J(\theta)$
... some surprises

- Godambe information $G(\theta)$ can decrease as more component CLs are added.
- Pairwise CL can be less efficient than independence CL.
- This can’t always be fixed by weighting.

- Parameter constraints can be important.
 - Example: binary vector Y,

 \[
 P(Y_j = y_j, Y_k = y_k) \propto \frac{\exp(\beta y_j + \beta y_k + \theta_{jk} y_j y_k)}{\{1 + \exp(\beta y_j + \beta y_k + \theta_{jk} y_j y_k)\}}
 \]
 - This model is inconsistent.

- Parameters may not be identifiable in the CL, even if they are in the full likelihood.

Xu, 12

Yi, 12
Applications: spatial and space-time data

- conditional approaches seem more natural
- condition on **neighbours** in space
- condition on **small number of lags** (in time)
- some form of blockwise components often proposed

 Stein et al, 04; Caragea and Smith, 07

- fMRI time series

 Kang et al, 12

- air pollution and health effects

 Bai et al, 12

- computer experiments: Gaussian process models

 Xi, 12

- spatially correlated extremes

 - joint tail probability known

 - joint density requires combinatorial effort (partial derivatives)

 - composite likelihood based on joint distribution of pairs, triples seems to work well

 Davison et al, (2012); Genton et al., 12, Ribatet, 12
Spatial extremes

- vector observations \((X_{1i}, \ldots, X_{di}), \ i = 1, \ldots, n\)
- example, wind speed at each of \(d\) locations
- component-wise maxima \(Z_1, \ldots, Z_d; Z_j = \max(X_{j1}, \ldots, X_{jn})\)
- \(Z_j\) are transformed (centered and scaled)
- general theory says

\[
\Pr(Z_1 \leq z_1, \ldots, Z_d \leq z_d) = \exp\{-V(z_1, \ldots, z_d)\}
\]

- function \(V(\cdot)\) can be parameterized via Gaussian process models
- example

\[
V(z_1, z_2) = z_1^{-1} \Phi\{(1/2)a(h) + a^{-1}(h) \log(z_2/z_1)\} + z_2^{-1} \Phi\{(1/2)a(h) + a^{-1}(h) \log(z_1/z_2)\}
\]

\[
Z(h) = (z_1, z_2), \ Z(0) = (0, 0), \ a(h) = h^T \Omega^{-1} h
\]
... spatial extremes

\[\Pr(Z_1 \leq z_1, \ldots, Z_d \leq z_d) = \exp\{-V(z_1, \ldots, z_d)\} \]

- to compute log-likelihood function, need the density
- combinatorial explosion in computing joint derivatives of \(V(\cdot) \)
- Davison et al. (2012, *Statistical Science*) used pairwise composite likelihood
- compared the fits of several competing models, using AIC analogue described above
- applied to annual maximum rainfall at several stations near Zurich
Fig. 1. Map of Switzerland showing the stations of the 51 rainfall gauges used for the analysis, with an insert showing the altitude. The 36 stations marked by circles were used to fit the models, and those marked with squares were used to validate the models. Data for the pairs of stations with blue symbols appear in Figure 2.
Fig. 3. Maps of the (predictive) pointwise 25-year return level estimates for rainfall (mm) obtained from the latent variable and max-stable models. The top and bottom rows show the lower and upper bounds of the 95% pointwise credible/confidence intervals. The middle row shows the predictive pointwise posterior mean and pointwise estimates. The left column corresponds to the latent variable model assuming $\text{Gamma}(5, 3)$ prior on λ. The middle column assumes the less informative priors $\lambda_{\eta} \sim \text{Gamma}(1, 100)$, $\lambda_{\tau} \sim \text{Gamma}(1, 10)$ and $\lambda_{\xi} \sim \text{Gamma}(1, 10)$. The right column corresponds to the extremal t copula model.
Network tomography, Liang & Yu, 2003

- $X = (X_1, \ldots, X_{m'})$ network dynamics
e.g. traffic flow counts; node delays
- $Y = (Y_1, \ldots, Y_m)$ measurement vector $m \ll m'$
- $Y = AX$, A known routing matrix, entries 1 $m \times m'$
- components X_j are independent, with density $f_j(\cdot; \theta_j)$

\[
\begin{pmatrix}
Y_1 \\
Y_2 \\
Y_3 \\
Y_4
\end{pmatrix} =
\begin{pmatrix}
1 & 1 & 0 & 1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 & 1 & 0 \\
1 & 0 & 1 & 0 & 0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
X_1 \\
X_2 \\
X_3 \\
X_7
\end{pmatrix}
\]
network tomography

- observations $Y_1, \ldots, Y_n; \ Y_i = AX_i$
- composite likelihood constructed using all possible pairs of rows of $m \times m'$ routing matrix A
- requires only distributions of pairs Y_r, Y_s
Fig. 4. Link L_1 error norm averaged over 30 simulations. Solid line is MPLE, dashed line is MLE, and dotted line is recursive algorithm. For each link, the vertical bar shows the SD of L_1 error norm for the given link.
... applications

- time series – a case of large m, fixed n
 - need new arguments re consistency, asymptotic normality
 - consecutive pairs: consistent, not asy. normal
 - $AR(1)$: consecutive pairs fully efficient; all pairs terrible
 (consistent, highly variable)
 - $MA(1)$: consecutive pairs terrible

 Davis and Yau (2011)

- genetics: estimation of recombination rate
 - somewhat similar to time series
 - but correlation may not decrease with increasing length
 - suggesting all possible pairs may be inconsistent
 - joint blocks of short sequences seems preferable

- linkage disequilibrium

- family based sampling

 Larribe and Fearnhead (2011); Choi and Briollais, 12
... applications

- Gaussian graphical models
 - symmetry constraints have a natural formulation in terms of elements of concentration matrix
 - conditional distribution of $y_j \mid y_{(-j)}$

- multivariate binary data for multi-neuron spike trains
 - Amari (IMS, 12)

- CL as a working likelihood in ‘maximization by parts’
 - Bellio, 12

- latent variable models in psychometrics
 - Moustaki, 12, Maydeu-Olivares, 12

- many linear and generalized linear models with random effects
- multivariate survival data
- ...

Gao and Massam, 12
What don’t we know?

- Design
- marginal vs. conditional
- choice of weights
- down-weighting ‘distant’ observations
- choosing blocks and block sizes

Pause

- Uncertainty estimation
- \(\hat{J}(\hat{\theta}_{CL}) = \text{var}\{\partial c\ell(\theta)/\partial \theta\} \)

 need replication; need lots of replication

- perhaps estimate \(G(\hat{\theta}_{CL}) \) or \(\text{var}(\hat{\theta}_{CL}) \) directly – bootstrap, jackknife

- or estimate using ideas from higher-order asymptotic approximations

Fraser, 12
... what don’t we know?

- Identifiability (1): does there exist a model compatible with a set of marginal or conditional densities?

- Identifiability (2): what if different components are estimating different parameters?

- Robustness: CL uses ‘low-dimensional’ information: is this a type of robustness?
 - find a class of models with same low-d marginals
 - classical perturbation of starting model (using copulas?)
 - random effects models might be amenable to theoretical analysis
 - Xu, 12
 - Joe, 12
 - Jordan, 12

- asymptotic theory for large m (long vectors of responses), small n

- relationship to Generalized Estimating Equations
Aspects of robustness

- **model robustness**
 - univariate and bivariate margins only for example
 - means, variances, association parameters
 - similar in flavour to generalized estimating equations GEE: mean structure primary

- **computational robustness**
 - composite log-likelihood functions are **smoother** than log-likelihood functions
 - easier to maximize, easier to work with
 - especially in high dimension cases

- robust to missing data mechanisms: Yi, Zeng and Cook (2010)
- access to multivariate distributions: e.g. mv extremes

Liang and Yu (2003)

Davison et al. (2012)
Robustness of consistency

working model \(\{ f(y; \theta); \theta \in \Theta \} \)
true model \(g(y) \)

<table>
<thead>
<tr>
<th>Model</th>
<th>Full Likelihood</th>
<th>Composite Likelihood</th>
</tr>
</thead>
<tbody>
<tr>
<td>Correctly specified</td>
<td>(f(y; \theta_0) = g(y)) (\hat{\theta}_{ML} \to \theta_0)</td>
<td>(f_k(y; \theta_0) = g_k(y)) for all (k) (\hat{\theta}_{CL} \to \theta_0)</td>
</tr>
<tr>
<td>Misspecified</td>
<td>(f(y; \theta) \neq g(y)), (\hat{\theta}_{ML} \to \theta^*_M)</td>
<td>(f_k(y; \theta) \neq g_k(y)) for some (k) (\hat{\theta}_{CL} \to \theta^*)</td>
</tr>
</tbody>
</table>

Top row – efficiency

Ximing Xu, U Toronto
... robustness of consistency

working model \(\{ f(y; \theta); \theta \in \Theta \} \)
true model \(g(y) \)

<table>
<thead>
<tr>
<th>Model</th>
<th>Full Likelihood</th>
<th>Composite Likelihood</th>
</tr>
</thead>
</table>
| Correctly specified | \(f(y; \theta_0) = g(y) \)
\(\hat{\theta}_{ML} \rightarrow \theta_0 \) | \(f_k(y; \theta_0) = g_k(y) \) for all \(k \)
\(\hat{\theta}_{CL} \rightarrow \theta_0 \) |
| Misspecified | \(f(y; \theta) \neq g(y) \),
\(\hat{\theta}_{ML} \rightarrow \theta^*_{ML} \) | \(f_k(y; \theta) \neq g_k(y) \) for some \(k \)
\(\hat{\theta}_{CL} \rightarrow \theta^* \) |

Ximing Xu, U Toronto
... robustness of consistency

- example (Andrei and Kendziorski, 2009):
 \[Y_1 \sim N(\mu_1, \sigma_1^2), \ Y_2 \sim N(\mu_2, \sigma_2^2), \ \varepsilon \sim N(0, 1) \]
- \[Y_3 = Y_1 + Y_2 + bY_1 Y_2 + \varepsilon \]
- full likelihood for multivariate normal is a mis-specified model, \(\hat{b} = 0 \)
- composite conditional likelihood based on normal distribution for \(f(Y_3 \mid Y_2, Y_1) \rightarrow \) consistent estimate of \(b \)
- example (Arnold and Xu):
 \[f(Y) = \Phi_p(Y; \mu, \Sigma) + g(\mu, \Sigma)(\prod_{i=1}^{p} Y_i 1\{|Y_i| \leq t\}) \]
- sub-distributions of dimension \(k < p \) are multivariate normal
- pairwise likelihood estimator nearly identical to mle assuming incorrect \(N_p(\mu; \Sigma) \) model
Some dichotomies

- conditional vs marginal
- pairwise vs everything else
- unstructured vs time series/spatial
- weighted vs unweighted
- “it works” vs “why does it work?” vs “when will it not work”
- ...
Special Announcements

Watch the Live Video Stream from BIRS

Announcement About Live Video Streaming

Today from BIRS

Workshop: Interactions between continuous and discrete holomorphic dynamical systems

Testimonials

“(1) I learned recent results on descriptive set theory and von Neumann algebras, and I found them quite interesting. Among others it was particular...” continue reading

News from BIRS

2010 and 2011 Proceedings Now Available

Telling a Gaussian distribution curve from...