
 L Likelihood

If the force of mortality is constant over a single-year
age interval (x, x + ), say, and is estimated by µ̂x in this
interval, then p̂x = e−µ̂x is an estimator of the single-year
survival probability px.�is allows us to estimate the sur-
vival function recursively for all corresponding ages, using
ℓ̂(x + ) = ℓ̂(x)p̂x for x = , , . . . , and the rest of the
life table computations follow suit. Life table construction
consists in the estimation of the parameters and the tab-
ulation of functions like those above from empirical data.
�e data can be for age at death for individuals, as in the
example indicated above, but they can also be observa-
tions of duration until recovery from an illness, of intervals
between births, of time until breakdown of some piece of
machinery, or of any other positive duration variable.
So far we have argued as if the life table is computed for

a group of mutually independent individuals who have all
been observed in parallel, essentially a cohort that is fol-
lowed from a signi�cant common starting point (namely
from birth in our mortality example) and which is dimin-
ished over time due to decrements (attrition) caused by
the risk in question and also subject to reduction due to
censoring (withdrawals).�e corresponding table is then
called a cohort life table. It is more common, however, to
estimate a {px} schedule from data collected for the mem-
bers of a population during a limited time period and to
use the mechanics of life-table construction to produce a
period life table from the px values.
Life table techniques are described in detail in most

introductory textbooks in actuarial statistics,7biostatistics,
7demography, and epidemiology. See, e.g., Chiang (),
Elandt-Johnson and Johnson (), Manton and Stallard
(), Preston et al. (). For the history of the
topic, consult Seal (), Smith and Key�tz (), and
Dupâquier ().
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Introduction
�e likelihood function in a statistical model is propor-
tional to the density function for the random variable to
be observed in the model. Most o�en in applications of
likelihood we have a parametric model f (y; θ), where the
parameter θ is assumed to take values in a subset of Rk,
and the variable y is assumed to take values in a subset of
Rn: the likelihood function is de�ned by

L(θ) = L(θ; y) = cf (y; θ), ()

where c can depend on y but not on θ. In more gen-
eral settings where the model is semi-parametric or non-
parametric the explicit de�nition is more di�cult, because
the density needs to be de�ned relative to a dominating
measure, whichmay not exist: seeVan derVaart () and
Murphy andVan derVaart ().�is article will consider
only �nite-dimensional parametric models.
Within the context of the given parametric model, the

likelihood function measures the relative plausibility of
various values of θ, for a given observed data point y. Val-
ues of the likelihood function are only meaningful relative
to each other, and for this reason are sometimes stan-
dardized by the maximum value of the likelihood func-
tion, although other reference points might be of interest
depending on the context.
If ourmodel is f (y; θ) = (ny)θy(−θ)n−y, y = , , . . . ,n;

θ ∈ [, ], then the likelihood function is (any function
proportional to)

L(θ; y) = θy( − θ)n−y
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and can be plotted as a function of θ for any �xed value
of y. �e likelihood function is maximized at θ = y/n.
�is model might be appropriate for a sampling scheme
which recorded the number of successes amongn indepen-
dent trials that result in success or failure, each trial having
the same probability of success, θ. Another example is the
likelihood function for the mean and variance parameters
when sampling from a normal distribution with mean µ
and variance σ :

L(θ; y) = exp{−n log σ − (/σ )Σ(yi − µ)},

where θ = (µ, σ ).�is could also be plotted as a function
of µ and σ  for a given sample y, . . . , yn, and it is not dif-
�cult to show that this likelihood function only depends
on the sample through the sample mean y = n−Σyi and
sample variance s = (n − )−Σ(yi − y), or equivalently
through Σyi and Σyi . It is a general property of likelihood
functions that they depend on the data only through the
minimal su�cient statistic.

Inference
�e likelihood function was de�ned in a seminal paper
of Fisher (), and has since become the basis for most
methods of statistical inference. One version of likelihood
inference, suggested by Fisher, is to use some rule such
as L(θ̂)/L(θ) > k to de�ne a range of “likely” or “plau-
sible” values of θ. Many authors, including Royall ()
and Edwards (), have promoted the use of plots of
the likelihood function, along with interval estimates of
plausible values.�is approach is somewhat limited, how-
ever, as it requires that θ have dimension  or possibly ,
or that a likelihood function can be constructed that only
depends on a component of θ that is of interest; see section
“7Nuisance Parameters” below.
In general, we would wish to calibrate our inference

for θ by referring to the probabilistic properties of the
inferential method. One way to do this is to introduce a
probability measure on the unknown parameter θ, typi-
cally called a prior distribution, and use Bayes’ rule for
conditional probabilities to conclude

π(θ ∣ y) = L(θ; y)π(θ)/∫
θ
L(θ; y)π(θ)dθ,

where π(θ) is the density for the prior measure, and π(θ ∣
y) provides a probabilistic assessment of θ a�er observing
Y = y in the model f (y; θ). We could then make con-
clusions of the form, “having observed  successes in 
trials, and assuming π(θ) = , the posterior probability
that θ > . is .,” and so on.

�is is a very brief description of Bayesian inference, in
which probability statements refer to that generated from

the prior through the likelihood to the posterior. A major
di�culty with this approach is the choice of prior prob-
ability function. In some applications there may be an
accumulation of previous data that can be incorporated
into a probability distribution, but in general there is not,
and some rather ad hoc choices are o�en made. Another
di�culty is themeaning to be attached to probability state-
ments about the parameter.
Inference based on the likelihood function can also be

calibrated with reference to the probability model f (y; θ),
by examining the distribution ofL(θ;Y) as a random func-
tion, or more usually, by examining the distribution of
various derived quantities.�is is the basis for likelihood
inference from a frequentist point of view. In particular,
it can be shown that  log{L(θ̂;Y)/L(θ;Y)}, where θ̂ =
θ̂(Y) is the value of θ at which L(θ;Y) is maximized, is
approximately distributed as a χk random variable, where
k is the dimension of θ. To make this precise requires an
asymptotic theory for likelihood, which is based on a cen-
tral limit theorem (see 7Central Limit�eorems) for the
score function

U(θ;Y) = ∂
∂θ
logL(θ;Y).

If Y = (Y, . . . ,Yn) has independent components, then
U(θ) is a sum of n independent components, which under
mild regularity conditions will be asymptotically normal.
To obtain the χ result quoted above it is also necessary to
investigate the convergence of θ̂ to the true value govern-
ing the model f (y; θ). Showing this convergence, usually
in probability, but sometimes almost surely, can be di�-
cult: see Scholz () for a summary of some of the issues
that arise.
Assuming that θ̂ is consistent for θ, and that L(θ;Y)

has su�cient regularity, the follow asymptotic results can
be established:

(θ̂ − θ)T i(θ)(θ̂ − θ) d→ χk, ()

U(θ)T i−(θ)U(θ) d→ χk, ()

{ℓ(θ̂) − ℓ(θ)} d→ χk, ()

where i(θ) = E{−ℓ′′(θ;Y); θ} is the expected Fisher infor-
mation function, ℓ(θ) = logL(θ) is the log-likelihood
function, and χk is the 7chi-square distribution with k
degrees of freedom.

�ese results are all versions of a more general result
that the log-likelihood function converges to the quadratic
form corresponding to a multivariate normal distribution
(see 7Multivariate Normal Distributions), under suitably
stated limiting conditions. �ere is a similar asymptotic
result showing that the posterior density is asymptotically
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normal, and in fact asymptotically free of the prior distri-
bution, although this result requires that the prior distribu-
tion be a proper probability density, i.e., has integral over
the parameter space equal to .

Nuisance Parameters
In models where the dimension of θ is large, plotting the
likelihood function is not possible, and inference based on
the multivariate normal distribution for θ̂ or the χk dis-
tribution of the log-likelihood ratio doesn’t lead easily to
interval estimates for components of θ. However it is pos-
sible to use the likelihood function to construct inference
for parameters of interest, using variousmethods that have
been proposed to eliminate nuisance parameters.
Suppose in the model f (y; θ) that θ = (ψ, λ), where ψ

is a k-dimensional parameter of interest (which will o�en
be ).�e pro�le log-likelihood function of ψ is

ℓP(ψ) = ℓ(ψ, λ̂ψ),

where λ̂ψ is the constrainedmaximum likelihood estimate:
it maximizes the likelihood function L(ψ, λ) when ψ is
held �xed.�e pro�le log-likelihood function is also called
the concentrated log-likelihood function, especially in
econometrics. If the parameter of interest is not expressed
explicitly as a subvector of θ, then the constrained maxi-
mum likelihood estimate is found using Lagrange multi-
pliers.
It can be veri�ed under suitable smoothness conditions

that results similar to those at ( – ) hold as well for the
pro�le log-likelihood function: in particular

{ℓP(ψ̂) − ℓP(ψ)} = {ℓ(ψ̂, λ̂) − ℓ(ψ, λ̂ψ)}
d→ χk ,

�is method of eliminating nuisance parameters is not
completely satisfactory, especially when there are many
nuisance parameters: in particular it doesn’t allow for
errors in estimation of λ. For example the pro�le likeli-
hood approach to estimation of σ  in the linear regression
model (see 7Linear Regression Models) y ∼ N(Xβ, σ )
will lead to the estimator σ̂  = Σ(yi − ŷi)/n, whereas the
estimator usually preferred has divisor n−p, where p is the
dimension of β.

�us a large literature has developed on improvements
to the pro�le log-likelihood. For Bayesian inference such
improvements are “automatically” included in the formu-
lation of the marginal posterior density for ψ:

πM(ψ ∣ y)∝ ∫ π(ψ, λ ∣ y)dλ,

but it is typically quite di�cult to specify priors for possibly
high-dimensional nuisance parameters. For non-Bayesian

inference most modi�cations to the pro�le log-likelihood
are derived by considering conditional or marginal infer-
ence in models that admit factorizations, at least approxi-
mately, like the following:

f (y; θ) = f(y;ψ)f(y ∣ y; λ), or
f (y; θ) = f(y ∣ y;ψ)f(y; λ).

A discussion of conditional inference and density factori-
sations is given in Reid ().�is literature is closely tied
to that on higher order asymptotic theory for likelihood.
�e latter theory builds on saddlepoint and Laplace expan-
sions to derive more accurate versions of (–): see, for
example, Severini () and Brazzale et al. (). �e
direct likelihood approach of Royall () and others does
not generalize very well to the nuisance parameter setting,
although Royall and Tsou () present some results in
this direction.

Extensions to Likelihood
�e likelihood function is such an important aspect of
inference based on models that it has been extended to
“likelihood-like” functions formore complex data settings.
Examples include nonparametric and semi-parametric
likelihoods: the most famous semi-parametric likelihood
is the proportional hazards model of Cox (). But
many other extensions have been suggested: to empiri-
cal likelihood (Owen ), which is a type of nonpara-
metric likelihood supported on the observed sample; to
quasi-likelihood (McCullagh ) which starts from the
score function U(θ) and works backwards to an infer-
ence function; to bootstrap likelihood (Davison et al. );
and many modi�cations of pro�le likelihood (Barndor�-
Nielsen andCox ; Fraser ).�ere is recent interest
for multi-dimensional responses Yi in composite likeli-
hoods, which are products of lower dimensional condi-
tional or marginal distributions (Varin ). Reid ()
concluded a review article on likelihood by stating:

7 From either a Bayesian or frequentist perspective, the like-
lihood function plays an essential role in inference. The
maximum likelihood estimator, once regarded on an equal
footing among competing point estimators, is now typi-
cally the estimator of choice, although some refinement
is needed in problems with large numbers of nuisance
parameters. The likelihood ratio statistic is the basis for
most tests of hypotheses and interval estimates. The emer-
gence of the centrality of the likelihood function for infer-
ence, partly due to the large increase in computing power,
is one of the central developments in the theory of statistics
during the latter half of the twentieth century.



Likelihood L 

L

Further Reading
�e book by Cox and Hinkley () gives a detailed
account of likelihood inference and principles of statis-
tical inference; see also Cox (). �ere are several
book-length treatments of likelihood inference, including
Edwards (), Azzalini (), Pawitan (), and Sev-
erini (): this last discusses higher order asymptotic
theory in detail, as does Barndor�-Nielsen andCox (),
and Brazzale, Davison and Reid (). A short review
paper is Reid (). An excellent overview of consis-
tency results for maximum likelihood estimators is Scholz
(); see also Lehmann andCasella (). Foundational
issues surrounding likelihood inference are discussed in
Berger and Wolpert ().
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