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Summary. We investigate the choice of default priors for use with likelihood for Bayesian and
frequentist inference. Such a prior is a density or relative density that weights an observed
likelihood function, leading to the elimination of parameters that are not of interest and then a
density-type assessment for a parameter of interest. For independent responses from a contin-
uous model, we develop a prior for the full parameter that is closely linked to the original Bayes
approach and provides an extension of the right invariant measure to general contexts. We then
develop a modified prior that is targeted on a component parameter of interest and by targeting
avoids the marginalization paradoxes of Dawid and co-workers. This modifies Jeffreys’s prior
and provides extensions to the development of Welch and Peers. These two approaches are
combined to explore priors for a vector parameter of interest in the presence of a vector nuisance
parameter. Examples are given to illustrate the computation of the priors.

Keywords: Invariant prior; Jeffreys prior; Likelihood asymptotics; Marginalization paradox;
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1. Introduction

We develop default priors for Bayesian and frequentist inference in the context of a statistical
model f(y;6) and observed data y°. A default prior is a density or relative density that is used
as a weight function applied to an observed likelihood function. The choice of prior is based
directly on assumed smoothness in the model and an absence of information about how the
parameter value was generated.

One Bayesian role for a default prior is to provide a reference, allowing subsequent mod-
ification by an objective, subjective, personal, elicited or expedient prior. From a frequentist
viewpoint a default prior can be viewed as a device to replace integration on the sample space
by integration on the parameter space and thus to use the likelihood function directly. From
either viewpoint a default prior offers a flexible exploratory approach to statistical inference.

There is a large literature on the construction of many types of default prior, variously called
non-informative, non-subjective or objective; a complete review is beyond the scope of this paper.
The term objective prior has obvious scientific interpretation and perhaps should be reserved
for contexts where it is known that 8 arose from some density g(#). A very helpful survey of
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various methods for constructing default priors is given in Kass and Wasserman (1996). In most
discussions there is some emphasis on ensuring correct calibration of posterior probabilities,
in the sense that these represent probability under the model, at least approximately. A recent
discussion of this appears in Berger (2006); Goldstein (2006) gives a contrary view. Our view
is that such calibration is necessary to ensure that posterior inference does not give misleading
results. Calibration of Bayes procedures is reviewed in Little (2006).

Broadly speaking, approaches to default priors in the literature include those based on notions
of invariance and generalized invariance, on information or divergence measures and on the
goal of matching posterior and frequentist inferences to some order of approximation. For a
scalar parameter model, all these approaches lead to Jeffreys’s prior my(0) o< i'/?(), where i(6)
is the expected Fisher information in the model. Jeffreys (1961) derived this default prior on the
basis of invariance arguments, and this was further pursued by Box and Tiao (1973) through the
concept of data-translated likelihoods; see Kass (1990). George and McCulloch (1993) derived
a class of invariant priors and developed a link to divergence methods. Divergence methods can
be framed in the context of the information processing that takes a prior distribution to a pos-
terior distribution, as in Zellner (1988). The reference prior approach of Bernardo (1979) and
Berger and Bernardo (1992) seeks to maximize the Kullback—Leibler divergence from the prior
to the posterior distribution: Clarke and Barron (1994) related this to least favourable distribu-
tions. This approach has been extended to families of divergence measures; a recent treatment
is Ghosh et al. (2009). A more direct construction of reference priors for scalar parameters is
given in Berger ez al. (2009). Welch and Peers (1963) derived Jeffreys’s prior by a probability
matching argument based on Edgeworth expansions.

In extending these results to problems with nuisance parameters several difficulties arise. The
Welch—Peers approach was used in Peers (1965), Tibshirani (1989) and in several papers by
Mukerjee and colleagues; a review of this literature is provided by Datta and Mukerjee (2004).
These extensions considered the construction of matching priors by using asymptotic arguments
based on Edgeworth expansions, and the construction turns out to be difficult, and sometimes
not possible. The reference prior approach to the construction of priors in the presence of
nuisance parameters involves difficulties both in the ordering of the parameters and in the con-
struction of compact subsets of the parameter space, which are still unresolved. Clarke and Yuan
(2004) have given a survey of information-based priors for problems with nuisance parameters.
Jeffreys (1961) recognized that his arguments based on invariance led to unsuitable priors in
regression—scale problems and recommended a modified approach treating location and scale
parameters as independent: see Kass and Wasserman (1996).

We construct default priors directly by examining how parameter change determines change
in the model near an observed data point. The corresponding volume change as a function
of the parameter reflects the sensitivity of the parameter at the data point and is the link to
replacing sample space integration by parameter space integration. This is developed in Section
2, leading to the default prior given below by expression (7) or (9). In Section 3 we consider
examples of exact and approximate priors using this construction. As part of this we show that
the default prior needs in general to be targeted on the parameter of interest when there is
a type of non-linearity in that parameter; this is an aspect of the marginalization paradox of
Dawid et al. (1973). In Section 4 we use third-order approximations for p-values and posterior
probabilities to derive a suitably targeted prior defined on the profile curve of the parameter of
interest, and we then extend this to the full parameter space, leading to a full default targeted
prior, given in Section 4 by equation (28).

The information-based approach, however, seems to be limited to the case of scalar inter-
est and scalar nuisance parameters, and to extend this to vector subparameters we return to
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the approach of Section 2. This is described in Section 5, and in Section 6 we record a brief
discussion.

Our goal throughout is to examine the structure of priors for which stated levels for posterior
inference are realized, at least approximately. Our development is not rigorous, but we require
the model to be smoothly differentiable in both y and 6, and assume that the log-likelihood
function can be expanded in Taylor series to at least third order, in the usual manner of asymp-
totic expansions. Our method of construction of default priors entails dependence on the data.
Data-dependent priors have been discussed in the literature in various contexts, such as Box and
Cox (1964) and Wasserman (2000). Pierce and Peters (1994) noted that agreement of Bayesian
and frequentist higher order approximations would in general require data-dependent priors.
Clarke (2007) discussed the role of data-dependent priors in the context of priors constructed
by information processing arguments.

2. Default priors from model properties

Suppose that we have a scalar parameter 6 and a single observation from a model with density
function f(y;#) and distribution function F(y;0), where F is stochastically increasing and con-
tinuously differentiable in both y and 6. For an observed value y°, the p-value as a function of
0 is F(y°;0) and the posterior right-hand tail distribution function is

50 =c(") /9 FO6019) m(0) do.

With location models these two functions are equal, giving support to the Bayes (1763) proposal
for inference. If these two inference functions are to be equal more generally, thus providing
equivalence of posterior and frequentist inference, then

FO%i0=c [ 050wy do.
Differentiating both sides with respect to € gives
ad
5 P00 o= 175 0)(0),

which determines the data-dependent prior as

Fp(y%;0)

— .40
() =m(0;y") x )

, €]

where the subscript notation indicates differentiation with respect to the relevant argument. The
derivation of this default prior shows that the parameter space integration provides a duplicate
of the sample space integration; in other words the posterior survivor function s() is exactly
equal to the frequentist p-value function, which records the percentile position of the data with
respect to possible 8-values.

In the special case of a location model, F(y;6)= F(y — 0), expression (1) gives a constant
prior for #; otherwise it gives a precise generalization, that can be viewed as equivalent to a
re-expression of 6. The prior can also be interpreted as 7(6) o |dy/df|, where the derivative is
computed with F(y;0) held fixed.

Another way to describe this is to note that in a location model the quantile at any observed
value ¥ shifts to y? 4+ df when 6 changes to 0+ dé, i.e. F(y°;0) = F(y° + d6;6 + df). For a
non-loc%tion model we generalize this by requiring the total differential of F(y;6) to be equal
to0at y’:
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0=dF(y;6)ly=y0
=Fy(y°;0)d0+ F,(3°;0) dy;

the effect at y? of parameter change at 6 is

dy| — F(%0) @
dolo  F00%0)

The same calculation when 6 is a vector of dimension p, with y still a scalar, gives
dy| __ Fr(%0), 3)
do’ {yo Fy(y%0)°

translation invariance becomes local translation invariance (Fraser, 1964). For a vector a we

write @’ for a7 when there is no risk of confusion with differentiation. Equation (2) can also

be written in terms of the quantile function by setting u = F(y; ), solving for the u-quantile

y=y(u;0) and then differentiating directly:
dy

.
= = o
a6| = 20" "”

u=F(y":0)
= yp(u; 9)|u=F(y°;6’)' 4

In equations (2)—(4) differentiation with respect to 6 is calculated with the p-value F(y;0) held
fixed, and then evaluated at the data point. Any pivotal quantity that is a one-to-one function
of F(y;0) gives the same definition of dy/dé.

With a sample of independent observations, y=(y1,..., y), each y; has a corresponding row
vector, V;(0) say, which is obtained from equation (3) by using its distribution function. The
change in the vector variable y at y° relative to change in  is

Vi)
dy .
W, : =V(0), (%)
NG
where V() is an n x p matrix that we call the sensitivity of 8 at y°. We denote the columns of
V(9) by {v1(0)...v,(0)} where the n x 1 vector v;(#) df; gives the data displacement when the
Jjth co-ordinate of 6 is changed by df;.

This sensitivity matrix V(6) forms the basis for the construction of a default prior. If we are
in a simple location model with scalar y and scalar 6 then V(#) =1, and as noted above with a
flat prior for 0 posterior probabilities are equal to observed p-values. Indeed Bayes (1763) used
an analogy (Stigler, 1982) and invariance argument to recommend the flat prior 7(6) =c for the
parameter 6, in effect proposing a confidence argument well before Fisher.

In non-location models the sensitivity matrix V() enables integration with respect to y, which
gives p-values, to be converted to integration with respect to 6, which gives posterior proba-
bilities, since equation (5) can be written dy = V(#) df. By analogy with the location model, a
natural default prior is 7y (0) o< | V(0)| = | V(0) V(0)|'/2, the volume element determined by V(6).
As dy=V(0)d6 is p dimensional for an increment df at 6, it is convenient to use maximum
likelihood co-ordinates 6(y) in place of y.

Writing 1(0; y) = log{ f(y;0)} for the log-likelihood function, and 6 =d(y) for the maxi-
mum likelihood statistic that is obtained by solving the score equation ly(#;y) =0, we find
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the connection between y and f(y) by calculating the total derivative of the score equation
1p(0; ) =0. At @°; y%) we have

Lo (073 y) 40 + 15,y (0°; %) dy =0,
where the differentials df and dy are respectively p x 1 and n x 1 vectors, and
Loy (6% ") = (8/36)(3/3y) 1(6; ) = H'
is the gradient of the score function at the data point. Solving for dé gives
dd=7""H'dy,

where j= j(#°; y0) =—3%1(0°; y°)/80 8¢ is the observed Fisher information. Substituting dy =
V(0) df from equation (5) gives

df=j7""H' v(9)do=w(@®)dob, (6)

which presents the sample space change df at 60 in terms of parameter space change df at
arbitrary 0. Expressing this as a volume element determined by W gives our default prior

m(0)do o |W(0)|do =7~ H'V(#)|de. @)

As at expression (1) this is a data-dependent prior, although we have suppressed the dependence
of 7(-) on y? in expression (7).

For calculations with component parameters it may be natural to standardize with respect to
observed information. Let j'/? be a right square root of the observed information matrix j and
define the information-standardized vector differential

31240 =3"2w®)do= (%) H' v(6) = W(6) d6. (®)
The rescaled default prior is then
7(0) df o< [W ()| d6, )

which is equivalent to expression (7); the matrix W (#) is used in example 9 in Section 5.

As we shall see these priors can lead to posterior survivor values that duplicate to second
order the frequentist p-values that are available from asymptotic theory for linear component
parameters; otherwise the marginalization paradox of Dawid et al. (1973) provides a limiting
factor in the presence of parameter curvature. Marginalization issues are examined in Sections
4 and 5.

3. Examples of default priors

3.1. Example 1: normal theory linear regression

Suppose that y; follows a normal distribution with mean X;3 and variance o2, where X; is
the ith row of an n x p design matrix X, 3is p x 1 and ¢’ = (3, 02). Inverting u; = F(y;;0) =
O{(y; — X;0)/0} = ®(z;), where ®(-) is the distribution function for the standard normal distri-
bution, gives the quantile functions as the usual expressions yj = X8+ 021,..., Vn=Xn 8+ 02,
for the model. We compute V(0) for fixed u, as described at equation (4), or equivalently for

fixed z, obtaining
0XB+o2) | _ [, 20)
y() - > 20_ >

B -..Bpo%)

V() =
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where z°(0) =z(°, 0) = (y* — X3) /o is the standardized residual corresponding to data y° and
parameter value . The sample space derivative of the log-likelihood ., = (3/0y)| = (X8 — y)/ o?
and Iy, (6;y) = {0 X, 0~ *(y = XB)} give

H={X/6%. ("~ x3")/6*} = (x/82.2°/5%).

where 6° is abbreviated as 6. The observed information j=diag(X'X /62, n/26*); combining
these by using expression (7) and least squares projection properties gives

A A2 A2 vy —1 1 A2
B I X'xX)7'x'2°0) /20
- { 2:96X /n 20200)6/no }
_[1 (=p))202
- { 0 62 /a2 }

leading to

dB=dB+ (B’ - B)do?/207,
dé?=6%do? /o>,

or equivalently to

df=ds+ (@ - B)doyo,

dé6=d6do/o,

in the modified parameterization (3, o).
The default prior given by expression (7) is

7(0)d0 o |W(0)|d0 xdBdo? /o> xdBdo /o, (10)

which is the familiar right invariant prior. This example illustrates how expression (7) modifies
the invariance argument of Jeffreys to adapt to the local location form of the distribution func-
tion for each co-ordinate. Jeffreys’s prior is the square root of the determinant of the expected
Fisher information matrix, which leads to the left invariant prior for (3, o?2), which is propor-
tional to d3do?/oP*2. This is usually regarded as incorrect for this problem; for example the
associated posterior does not reproduce the z-distribution with the usual degrees of freedom
for inference about components of (3, whereas the right invariant prior does and agrees with
Jeffreys’s (1961) proposal for a modified rule for location—scale settings (Kass and Wasserman,
1996).

3.2. Example 2: normal circle
As a special case of the normal theory linear model let (y;, y2) be distributed as N{(u1, 112); I/n}.
It follows either from the location model example, or from direct calculation, that the default
prior for the location parameter p is ¢dpyduy and the associated posterior for (ug, pp) is
N {(y(l), yg); I/n}. For any component parameter that is linear in (u, 1#p) we then have exact
agreement between frequentist p-values and Bayesian survivor probabilities.

Suppose now that we reparameterize the model as 6 = (p, a) where p; = pcos(a) and puy =
psin(a), and thus the quantile functions are y; = pcos(a) +z1 and y, = psin(«) + z», where z;
and z; are independent standard normal variables. This gives
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du— cos(a) —psin(a) dp
H= sin(a)  —pcos(a) da
and a similar formula for d/i in terms of (dp, d&)’. Then from d/i = dpu for the initial co-ordinates
we obtain
dp\ _ [cos(@) —psin(d) -1 cos(a) —psin(a) dp
da ) \sin(@) —pcos(Q) sin(e)  —pcos(a) do

W(9):{ cos(a — a) pslln(oz—oz) }’ an

giving
—,6_1 sin(d@—a) pp~ cos(a— )

with respect to the new co-ordinates; and then from expression (7) or (9) we obtain the default
prior w(6) df o pdp da for the full parameter. This is equivalent to the default flat prior du duo
calculated directly from the location parameter (i1, 2) and then transformed by using the
Jacobian |9(p1, p12)/9(cx, p)|.

However, this prior is not appropriate for marginal inference when the parameter of interest
is the radial distance p, which is a non-linear function of the mean vector ;. The marginal distri-
bution of y% + y% depends only on p, and the p-value function from this marginal distribution is

p(p) =Pr{G(0H) <n(? +y3)},

where X%(éz) is a non-central y2-distribution with 2 degrees of freedom and non-centrality
parameter 62 and the ys are fixed at their observed values. In contrast the posterior survivor
function for p under the flat prior du; dus is

s(p) =Pr{p* <3 {n (3 + )1

Numerical calculation confirms that there can be substantial undercoverage for right-hand
tail intervals based on this marginal posterior (Fraser and Reid, 2002). In the extension to k
dimensions, with y; distributed as N(u;, 1/n), i=1,...,k, it can be shown that

k—1 1
s(p) —p(p)=—=+0m"")
p/n
so the discrepancy increases linearly with the number of dimensions. The scaling of the variances
by 1/n enables this asymptotic analysis: we could equivalently model independent observations
vij, j=1,...,n, from normal distributions with mean y; and variance 1.

This discrepancy does not appear in the first order of asymptotic theory, where both the
Bayesian and the frequentist approximation to (p — p)+/n is the standard normal distribution,
so to this order of approximation p-values and marginal survivor probabilities are identical.
This is simply reflecting the fact that any prior that does not depend on # is in the limit swamped
by the data and has no effect on the posterior inference. Thus to study the agreement between
Bayesian and frequentist inference it is necessary to consider exact distributions or at least higher
order approximations.

The inappropriateness of the point estimator of p developed from the prior 7 (p) dp o< e was
pointed out in Stein (1959) and was discussed in detail in Cox and Hinkley (1974), pages 46 and
383.

This example illustrates in simple form the difficulty with the default prior (7) and any ‘flat’
prior for a vector parameter. It is not possible to achieve approximate equality of Bayesian
and frequentist inferences beyond the simple asymptotic normal limit when the parameter of
interest is curved in a locally defined location parameter. This is a version of the marginalization
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paradox of Dawid et al. (1973), where assigning a prior to a full parameter and then marginaliz-
ing the resulting posterior necessarily conflict with the approach of reducing to a one-parameter
model and assigning a marginalized prior to that parameter of interest. Curvature and local
location parameters are described in more detail in Appendix A.3. The need to target the prior
on the particular parameter component of interest is well recognized in the literature on the
construction of reference priors but seems less well appreciated in other contexts. In Section 4
we give a method to adapt the default prior (9) to target a particular parameter of interest.

3.3. Example 3: transformation models

The preceding examples are special cases of transformation models. In Appendix A.1 we briefly
record some background on transformation models and show that the locally defined prior (7)
reproduces the right invariant prior for that model type; thus expression (7) can be written

m(0)df o |[W(6)|d0=cdv(B)

where dv(0) is the right invariant measure on the transformation group. Transformation model
theory shows that this prior is fully accurate for reproducing frequentist p-values, provided that
the parameter of interest has a form of linearity, thus avoiding the marginalization issues of
Dawid et al. (1973).

In the next three examples the default prior is based on the approximate location relationship
that is described by the sensitivity matrix V(6).

3.4. Example 4: Welch—Peers approximation

As noted above, the construction of the default prior by using the sensitivity matrix V(6), or the
modification W(#), gives a flat prior when 6 is a location parameter. If we have a scalar param-
eter model with location parameter G(6), then this construction gives the flat prior 7(#) df
d3(0). More generally for a scalar parameter model, an approximate location parameter prior is
proportional to i'/%(#), where i(6) is the expected Fisher information Eq{—1"()}. This was
established in Welch and Peers (1963), by showing that this choice led to the equality, to O(n~1),
of approximations to confidence and posterior bounds. This in turn implies that

17 0
z=/ il/z(t)dt—/ il dr (12)

has a limiting standard normal distribution, and to second order has a distribution that is free
of 6. In quantile form this can be written 3=+ z, where 3(0) = [ 9i172(t)dr is the constant
information reparameterization and z is a quantile of the 0-free distribution. Then, for fixed z,
dB=dg gives the Jeffreys prior d3 oci'/2(9) d. The interpretation of this prior in terms of an
approximate location parameter was discussed in Kass (1990).

As a special case of a general scalar parameter model, suppose that

fls:p) =exp{ps —k(p) }h(s),
with a sample point data s® =0; we assume that the parameter is centred so that ¢° =0. Then
observed information is the same as expected information and equation (12) gives

7= / JZ @0 de— / J2@dr.
Then using j,,($) =k" () and the score equation s —k'(¢) =0 gives ds =k"(¢) dp and

dz=j7"2(@)dp— j"2(p) de.
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Thus for fixed quantile z we have

ds=jl2(@%) ji2 (p) de: (13)

this gives an expression that is analogous to expression (6), but in terms of the score variable
instead of the maximum likelihood estimator. This links the location parameter approach for
constructing priors to that based on Fisher information. In Section 4 we extend this linking to
develop targeted priors from exponential family approximations.

3.5. Example 5: non-linear regression

Suppose that y; are independently normally distributed with mean x;(3) and variance o2 for
i=1,...,n, with x;(#) a known non-linear function of the p x 1 vector 3. As in example 1, the
quantile functions are y; = x;(8) 4+ oz; and, with 8’ = (', o), the sensitivity matrix V(6) is

X183 {0 -x1(8)}/20?
v =1 : ={x® °®)/20},
Xn(B) {yg —Xn (5)}/202

where X; () = x;([3)/95'. We also have

where
=3 XiAXiB) = S —x B} i3 o

and again for notational convenience we write 6> = (6°)? = {y— x(ﬁ Wi{y— x(ﬁ )}/n. We then
obtain

A2 A1 0 ,
W<0>=(" ar /n) {Xf§ /)/ }{X(ﬁ) L®)/20},

_ { X XB) G XD zi(0) /20 }
263 2iXi(B)/n (6/0) Y 2izi @) /n |

where Z; = {y; —xi(B)}/ﬁ and z;(0) ={y; —xi(8)}/o. The determinant of W(6) has the form
h(3)/o2, where h(f3) is a non-linear function of 3 determined by the derivatives X(3) of the
mean function. Using the approximation

x(8) =x(3") + x(B°Y (B - B°) + wn 172

where w is orthogonal to the linear space that is spanned by the columns of X (BO), the default
prior becomes d3do?/o2 to O(n~'), where dj3 designates a flat prior in co-ordinates of the
tangent plane projection at the fitted data point. The two-group reference prior for this example
is | X(B) X(B8)|'/?>dBdo?/o? (Yang and Berger, 1996), which was also proposed on the grounds
of invariance by Eaves (1983).
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3.6. Example 6: gamma distribution
As an example of a one-parameter model which is neither location nor scale, we consider default
priors for the shape parameter of a gamma model:

P S
f(y,9)—r(€)y exp(—y).

Jeffreys’s prior is 7y (A) ocy” () 1/?, where 1() =1og{I'(d) }. To construct a location-based prior
for a sample of n, we use equation (2) to obtain
Y?
I'(6) F(y?; 0) — / 1 log(z) exp(—z) dz
0

Vi(0) =
@ exp(—y)) (y?)f-1

The ith entry of H is (1/ y?), so from expression (7) we have 7(6) o3 V;(0)/ y?.

Fig. 1 shows Jeffreys’s prior and 7 (6) for two different samples of size 30 from the gamma
distribution with shape parameter § = 3. The priors are normalized to equal 1 at § =3. The
priors agree in the neighbourhood of the observed maximum likelihood value and then have
slightly different curvature as they respond differently to curvature in the model.

This example can be extended to the two-parameter gamma model, with shape 6 and scale
parameter A:

1
S A 0) = ﬂkeyg_l exp(—=\y).

Prior
08 10 12 14 16 138
l

0.6
|

Fig. 1. Priors for the shape parameter of a gamma distribution: Jeffreys’s prior 7;(6) ( ) is proportional
to 1[;”(0)1/2 where ¢ is the trigamma function; the default prior (------- ) that is proposed here is based
on expressions (2) and (7) and is presented here for two different samples y° of size 30 from a gamma
distribution with true value 6 = 3; the priors are normalized to equal 1 at the true value
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The sensitivity matrix V(A, ) has two columns: the ith element in the column corresponding to
AisVii(\, 0) = y? /A, and the ith element in the column corresponding to 6 is
/\yl(.)
I'"(0) Fl(/\y?; 0) — / 21 log(z) exp(—z)dz
0

Via(\, 0) =
2.0 AL exp(=Ay))

where Fi(-) is the distribution function for the one-parameter gamma model that was used
above. The default prior (7) is

W(G,A)O(%(\_/—)A\W), (14)

where V=(1/n)XV;; and W=(1/n)% Vig/yl(-). Transforming expression (14) to the orthogonal
parameterization (6, u), where u==0/\, gives

7r(9,u)o<l (V—?W). (15)
[ fi
Numerical work which is not shown indicates that the second factor in expression (15) depends
very slightly on p. In contrast, the reference priors that were developed by Liseo (1993) and
Sun and Ye (1996) take the form (1/u) h(9), where h(6) =[{6 " (6) — 1}/0]1/2 for the reference
prior, {61 (8) — 1}/6'/? for a f-matching prior that was developed in Sun and Ye (1996), and
{64 (0) — 1}1/2 for Jeffreys’s prior.

4. Targeted default priors: scalar components

The approach that was developed in the preceding sections gives a default prior for a vector
parameter, but the resulting posterior is not appropriately targeted on component parameters
unless the components are linear, in the sense discussed in Appendix A.3. To develop default
priors that are targeted on parameters of interest, we use an approach that is motivated by higher
order asymptotics and by the interpretation of the Welch—Peers prior as a location-model-based
default prior as noted in example 4. In that example, the Fisher information function defines
locally a location parameter, and the resulting flat prior is given by the Fisher information
metric. To generalize this to the vector case, we can either generalize the location model approx-
imation, which we did in the previous section, or the information approach, which we now
consider. For targeting the prior on the parameter of interest, the information approach seems
more directly accessible. In Section 5 we combine the two approaches to develop default priors
for vector parameters of interest in the presence of nuisance parameters, although the resulting
posterior is still subject to the marginalization paradox and thus may need recalibration for
determining posterior probabilities for curved parameters.

The higher order approximations that are used to derive the information-based prior are accu-
rate to O(n~3/%) in continuous models, but the expression of the results in terms of information
quantities only will be accurate just to O(n~!). We write § = (4, \), where v is a scalar parame-
ter of interest and ) is a nuisance parameter, and let éw =, f\,l/)) be the constrained maximum
likelihood estimator, where 5\1/) is the solution, which is assumed unique, of 9/(6)/d\=0.

The Laplace approximation to the marginal posterior survivor function for v is

s() =®(rg) =2{r+(1/r)log(gs/r)}. (16)

where
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ICDIRERI()
HOIEEEI(DY

g8 =1,(1) (18)

Ja 1s the submatrix of the observed Fisher information matrix corresponding to the nuisance
parameter and /(1)) = l(t%) is the profile log-likelihood function. This can be derived from
Laplace approximation to the marginal posterior density for #: see, for example, Tierney and
Kadane (1986), DiCiccio and Martin (1991) and Bédard et al. (2007); the approximation has
relative error O(n~3/2) for 1 in n~!/2-neighbourhoods of ).

There is a parallel O(n—3/2) p-value function for scalar ¥(6), which was developed in Barn-
dorff-Nielsen (1986) when there is an explicit ancillary function, and extended to general asymp-
totic models in Fraser and Reid (1993); see also Fraser et al. (1999) and Reid (2003). The analysis
makes use of the observed likelihood function /(8) =1(6; y°) and the observed likelihood gradi-
ent p(0) =1y (0; y0)=(8/aV) 1(0; y)| 30 calculated in sample space directions V that are described
below. Third-order inference for any scalar parameter () is then available by replacing the
model by an approximating exponential model:

9(s;0) =exp{l(0) +(0)'s} h(s) (19)

with observed data s° =0, and using the saddlepoint approximation. Some discussion of the
use of this exponential family model {/(#), ¢(6)} as a full third-order surrogate for the original
model is given in Davison et al. (2006) and Reid and Fraser (2010).

The p-value for testing ¢ (0) =) is

p(W) =) =®{r+(1/r)log(gr/r}; (20)

where r is as given above, and two equivalent expressions for gr are

gz (PO =000) @) 1O

o ()] i @)]172
e @ 1"
={x(0) —x (@} { L2 L @l
ljow (0y)]

see for example Fraser et al (1999) and Fraser and Reid (2002). The second version of gy
indicates that it can be presented as a parameter departure divided by its estimated standard
error, and the first version gives a form that is useful for computation. The scalar parameter
x(0) is a rotated co-ordinate of the canonical parameter () that is first derivative equivalent to
P(0) =1 at éw; it is the unique locally defined scalar canonical parameter for assessing /(6) =1.
Information quantities concerning v or X are calculated within the approximating exponential
model; in particular the matrix j») (@p) is the nuisance information matrix at the constrained
maximum, re-expressed in scaling provided by the canonical exponential parameter (6):

|j(/\)\)(é¢)|1/2= @)1 1ox (017,

where @) (0) = 9 (6)/0A. This calculation is straightforward because the second derivative is
evaluated at the constrained maximum likelihood estimator; if it is evaluated at other points in
the parameter space then there is an additional term from the first derivative of the log-likelihood
function.
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In the expression for ¢r, the canonical parameter (0) is defined by using sample space direc-
tional derivatives of the log-likelihood function:

al(@ y°) _y

where V;(0) is the ith row of the sensit1v1ty matrix (5). This canonical parameter ¢(f) becomes
the primary reference parameterization for calculations of our default priors. A derivation of
the r{f-approximation is beyond the scope of this paper but was described in Reid (2003) and
Fraser et al. (1999); see also Brazzale et al. (2007), chapter 8. The role of V(@°) is to implement
conditioning on an approximate ancillary statistic derived from a local location model, which
is why the same matrix arises here as in the discussion of default priors.

Because the only difference between equations (16) and (20) is in the use of g or g¢, and only
gg involves the prior, we obtain equality of posterior and frequentist inference to O(n=3/%) by
setting g = gr. This was suggested in Casella et al. (1995) and was developed further in Fraser
and Reid (2002), where it was called strong matching. Strictly speaking inference for i) can be
obtained by using equation (20) alone, but the close parallel between equations (16) and (20)
determines some aspects of the prior that are needed to ensure frequentist validity, at least to
the present order of approximation. Equating gr to gp gives

@) LWImO)ee® L@ @)1 Lo @)
@) e — 0@y oA@IIO]  xO) —x@yp) IO @)

If the model is free of nuisance parameters, we obtain the strong matching prior that was
described in Fraser and Reid (2002), which is given explicitly as

1'(0;y%
@09 — (6)

al(e )

l

@(0) = Vi(0%

(22)

m(0)df=c do=dp), (23)

where

0
() = / V959 /{0(@°) — p(9)} 9

is the local location parameter at the observed data point. This prior leads to third-order equality
of posterior probabilities and p-values and we refer to it as a third-order prior. In Appendix A.6
we show that the prior d3(6) is equivalent to second order to Jeffreys’s prior d5 of example 4.

With nuisance parameters expression (22) gives the data-dependent prior only on the profile
curve Cy ={6:0= (¢, Xw)} in the parameter space and does not directly give a prior over the
full parameter space. To extend the prior for arbitrary values of A we shall use the Welch and
Peers (1963) methods from example 4.

We first simplify expression (22) and write

)
x(60) —x(0y)
on the profile curve Cy. An extension of the argument in Appendix A.6 allows us to express
the first factor in terms of observed information, to second order. In the neighbourhood of a
value v, the imputed parameter Y is the canonical parameter for the conditional distribution of
the score variable on the line L, which is the translation of the profile curve Cy, into the score
space; Fig. 2. This conditional distribution is obtained from the approximating exponential
family (19). The first factor in equation (24) can be rewritten in terms of an increment in this
score variable, giving

m(0y)dpdr=c Ay [ @)ooy @112 d, 24)
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Fig. 2. Score and canonical parameter spaces with p =2: the contour of ¥(p) =1, a tested value; the
observed data s® = 0; the observed maximum likelihood value Lpo =0; the constrained maximum likelihood
value 993 lying on the profile curve C,; the observed nuisance score line L,;; the rotated ¢-co-ordinate x(y)
with contour y = X?, which is tangent to U(p) =1 at 992, the parameter y tilts the profile likelihood and shifts
the nominal profile distribution along the line Ly

1)
X(@) — x(@y)
_ L) @) 4
X(@) — x(@)

dSu =

(25)

where sy, is the score co-ordinate along the line L. Then extending equation (12) of example 4
we obtain the relationship between the score variable s, and the maximum likelihood variable

X($y) as
—1/2, 4~ 1/2 4
dzi = JXX/ (@) dsy — /XQ. A(@y)dx,

where the j,,., denotes information calculation for the ¢-linear parameter x, with contours
parallel to the tangent to the t-contour at ¢,, but laterally displaced, and obtained from the
exponential model (19). As at equation (13), with dz; =0 we have

A/2 0 .08 1/2 4
dsy= JX/X. A(ch)JXQ A(By) dx (26)

indicating how a data change ds,, relates to parameter change dy at the value 1), on the profile
curve Cy.

We now interpret the second factor in equation (24) by using a similar argument applied to
the complementary curve in the parameter space determined by a fixed value of . This gives

—1/2, » .1/2
dza = ) (@) dsi — il (@) AV,

where si is the score co-ordinate along the curve with fixed ¢. Thus using dz; =0 in the ¢-fixed
model we have

1/2 , o
d%; —](,<)\)(<Ppb) ]()\)\)(‘P) d(h),

giving a Welch—Peers complement to equation (26). The nuisance information away from the
constrained maximum needs careful calculation; see Appendix A.2.
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We combine the expressions for ds,, and dsj) and obtain
m(0)do = ds¢ dsi
_CJXX )\(@u) d(d’)]()\)\)(%p) ]()\,\)(99) d(). 27

As described in Appendix A.2, we use the notation (6) interchangeably with ¢, and similarly use
the notation (¢)) and ()\) for the parameter of interest and the nuisance parameter respectively,
recalibrated through the canonical parameter: d(¢)) = dy, for example. In equation (27) we
have a double Welch—Peers connection between sample space increment and various parameter
change increments using score co-ordinates instead of maximum likelihood co-ordinates.

For further interpretation of the targeted default prior (27), let j /\x)(@v? be the nuisance
information relative to the contours with y held fixed. Then Ty /\(gow) and j A, )(<pu) can be
combined to give | jpp(Py)] 1/2 and we obtain

W@
7(0)d0 = jop ()] (ﬁ/ji)” T @ @) dvy). (28)

JoA Py

The first factor is Jeffreys’s prior for the full parameter; the second factor is an adjustment for
curvature of the parameter of interest ¢ relative to its exponential linear version y; the third
factor is a marginalization adjustment that is obtained initially as Jeffreys’s prior for the nui-
sance parameter on the -fixed curve, and then extended off the profile curve. The notation
(Ay) = (M) emphasizes the dependence of the nuisance parameterization on the parameter of
interest. Some computational details for jox x,)(¢y) are recorded in Appendix A.2.

4.1. Example 7: normal (1, 02)

In example 1 we obtained the default prior for the full parameter 6 = (11, 02) as the right invari-
ant prior cdpudo?/o2. We now examine how the preceding targeted default prior works for the
components z and o2. Without loss of generality because of model invariance we can take the
data point to be (/i, 6%) = (0, 1). The canonical parameter is (o1, ¢2) = (/02 1/%), which has

the information function
-1 -2
. ') —P1¥y
Jop(0) =n < ) ) >
e —p107° 395 +01/03

. o? —,u02
=n (_lwz 04/2+M202>’
and thus the Jeffreys prior |y, (0)|'/2dp = (no//2)dp1dpr = (n/03/2)dpudo? by using
|00/ 060] =06
With p as the parameter of interest and with the particular data choice we have in moderate
deviations the profile curve C, = {(p1,6,)} ={ (1, 1)} where & aﬂ =62+ 2 =1+ 62/n, using cen-

tred co-ordinates for u=6/n'/% to O(n=") relative to the observed /i =0. First we have, to second
order, Jeffreys’s prior along the profile curve where 6 = Hﬂ = (u, 1)

. 1/2 "
e ()= dpr den \/2d<p1d<pz \/2

Next we calculate the ¢-based nuisance information, which will give Jeffreys’s prior for the

constrained model:
po 1Y
P

dpdo?.

_ )
(1, 92) 8 4

do2

n

T 204

Jo202) 0)=j,2,2
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to second order. Next we note that a u-fixed contour is linear in the exponential parameteriza-
tion so the curvature adjustment is 1. And next the marginalization adjustment is (na /)2 =
(n/2)1/2, 1gnor1ng terms of O(n~1). Flnally do? on the profile where 62 =1 extends off the

o
profile as do2 /o2 using invariance for o2. This gives the p-targeted default prior

8 (7)1/2 dudo? n3/2 dpudo?

02 22

JZ
in moderate deviations. This is the right invariant prior as in example 1.
With o2 as the parameter of interest and with the special data choice we have the profile curve
C,2={(fi,2,0%)}={(0,0%)}. First we have Jeffreys’s prior along the profile curve:
o3
lpp(0,2)1"* dpy dpr = \/2 dp1dpr = \/2 dpdo?.

Next we calculate the p-based nuisance information, which is the second derivative in the -
parameterization for fixed o2
1 /
—, 0

The curvature adjustment is 1 because the o2-fixed contour is linear in ¢, and then the margin-
alization adjustment is (n02)!/2. Finally dx on the profile curve extends off the profile curve as
dy by invariance. This gives the o2-targeted prior as

-2

n 2
) =no-.

. . dp| 2
T (0) = Jjupu(0) ’3H =

x1xoyndpdo? = ﬁ dyudo”

Ty (0)do = R

n
a3/2

again this is the right invariant prior as in example 1.

4.2. Example 8: normal circle (continued)

We saw in example 2 that the default prior for the canonical parameter (i1, u2) = (pcos(a),
p sin(a)) did not correctly target the component p = (u% + u%)l/ 2. Now consider the present
targeted prior (28) with 1) = p. In terms of polar co-ordinates for the parameter we have that the
profile curve for pis C, ={(p, do)}. First we have the Jeffreys prior on the profile curve,

| Jop (P, (340)|1/2d(oz) dp=1x pdadp=pdadp

where d(a) = pda gives the ¢-standardized measure for o at the profile C,. Next we calculate
the p-standardized nuisance information

. . dp |~ . _
J(aa) @)= ](uy(e) ’32 = pr|(—psin(a), PCOS(Oé))/| -~

The corresponding linear parameterization (\y) has information 1 as derived from the standard
normal error distribution; this gives the curvature adjustment (r/p)!/?; and then finally there is
the root nuisance information adjustment. We can then assemble the pieces for expression (28)

and obtain
A2 12
mp(0)do=p <> <> dadp=cdadp
p p

which is a flat prior in « and p. This agrees with several derivations of default priors, including
Fraser and Reid (2002), who obtained default priors on the constrained maximum likelihood
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surface, and with Datta and Ghosh (1995), who obtained this as a reference prior while noting
that it was in the family of matching priors that was derived in Tibshirani (1989).

Towards another way of explaining expression (28) from a somewhat different Welch—Peers
viewpoint, suppose that the full likelihood is first integrated with respect to the Jeffreys prior
for the nuisance parameter A,

Liow @, A2 d(Ay);

this uses the ¢-based reparameterization (\y) for fixed 1. This integration on the parameter
space has a Welch and Peers (1963) equivalent on the sample space that uses the corresponding
score variable s;; at 0 with differential

o (@, Ap)| ™2 dsy;.

By contrast the ordinary sample space integration to obtain the marginal density relative to v
uses just the score differential dsZ; for integration, which is | j) (¥, Ay)|!/? times larger. Thus
to duplicate directly the marginal density for v requires the rescaled Jeffreys prior

Liowy @ A 12 ooy @, A 12 d (M) (29)

the additional factor is in fact the marginal likelihood adjustment to the v -profile as developed
differently in Fraser (2003).

The adjusted nuisance Jeffreys prior (29) leads to marginal likelihood for ¢, which then
appears as an appropriately adjusted profile likelihood for that parameter of interest. This can
then be integrated following the Welch—Peers pattern by using root profile information obtained
from the exponential parameterization. This in turn gives the Jeffreys-type adjustment

J O d @)

for the profile concerning . The combined targeted prior for v is then

T =17 @) 7 Loy @)1V Lo )12 d (@) d(\y), (30)

for use with the full likelihood L (¢, \) where d(v)) is calculated on the profile from v-values on
the profile and d()\,) is calculated conditionally for given 1.

The rescaled Jeffreys integration for A on the parameter space produces marginal probability
concerning % with support ds,. For different ¢-values the support can be on different lines
through y°, which is the rotation complication that has affected the development of marginal
likelihood adjustments (Fraser, 2003).

5. Vector component parameters

The information approach that was outlined in the preceding section requires the nuisance
parameter to be scalar, so that the Welch—Peers analysis can be used to extend the default prior
beyond the profile contour. In this section we return to the continuity approach to extend the
approach to the case where the parameter of interest ¥(f) and nuisance parameter A(f) are
vector valued, with dimensions say d and p —d and with 8’ = (', \').

We work with the parameter effects matrix W(#) at expression (7) but the arguments are the
same using information-adjusted matrix W () defined at expression (8). The matrix W(0) can
be partitioned in accord with the components ) and X giving W(6) = {Wy,(0), Wx(#)} so that

df={Wy(©6), W)} (‘3&’) =Wy (0) dp + Wy () d.



648 D. A. S. Fraser, N. Reid, E. Marras and G. Y. Yi

To target the parameter on 1), we separate the effects of 1) and A by orthogonalization in the
information-standardized co-ordinates, as at equation (30), and construct the targeted prior as

7(0) A0 o< | W1 (0,) | dep WA (0)] d,
where
Wyr(By) = Wy — W (WA W)~ Wi W,

records the residual vectors for W,l/,(éw) orthogonalized to W), (91/,). This is similar to expression
(27), but without the middle factor, which is an adjustment for curvature. For a parameter value
0., = (¥, Ay) on the profile curve C,, formed by the constrained maximum likelihood value, a
change d\ in X with ¢ fixed generates a (p — d)-dimensional tangent plane 7,, = L{ W) (GU)} at
the observed §° on the data space for . The term Wi.a dep thus presents the effect of a change
dt) in ¢, perpendicular to 7,. When 1 is a vector we would, however, expect this prior for 1) to
give second-order calibration only for linear parameter components of ) in accord with Dawid
et al. (1973); otherwise we would have curvature effects in these components to take account of,
as in the normal circle example; these will be examined elsewhere.

5.1. Example 9: linear regression (continued from example 1)

Suppose that r =3, the parameter of interest is ¥ = (81, 3>) and the nuisance parameter is
= (03,02%). To simplify the expressions we assume that the regression variables have been

standardized so that X’ X/n=1. We have

100 (Bg—ﬂn/zaz
wey=|0 10 (@%—52)/202
0 0 1 (B3—-0B3)/20
000 62 /o2
giving
10 0 1(B1)6/20°yn
o _ [0 n2®é/207yn
Wol=19 o] "MO=], B(B)3 /203 n |
0 0 0 0/0

where ¢;(3;) = (ﬂ — Bj)«/n/3d is the usual ¢-statistic. As 6, =6 to O(n~1), we have [ Wy, )\(Hu)l =
1+ 0m™ ") and |W,\(0)| =/n/Q260%) {1+ 0(n~ 1)} giving the prior 7(f) x dﬂd02/20
would be expected from example 1. The same result is obtained by using the mformatlon-
standardized version (9); the observed Fisher information matrix is diag(nl/6%, n/26*) which
gives

1/6 0 0 1(B1)/20%6yn
o 0 1/6 - 0 0(B2)/20%6n
Wo@n=vnl o o | WaO=Vnl s (8202 yn |
0 0 0 1/60%/2

and thus, to order O(n~!), 7(#) x dBdo?/o? in moderate deviation about the observed maxi-
mum likelihood value.
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6. Discussion

We have described two approaches to default priors: one based on extending a location approxi-
mation, and one based on matching higher order approximations. There is a natural progression
in complexity, following the model type.

For a scalar parameter model that is not location, asymptotic arguments lead to Jeffreys’s
prior m3(0)df < i'/2(6) d§, which agrees with the Welch-Peers approach and gives matching
probabilities to second order. The refined version (23) gives matching to third order, and is data
dependent and incorporates conditioning on the approximate ancillary statistic.

The default prior that is based on the sensitivity matrix, which was derived in Section 2, extends
this local location property to vector parameters. Underlying the construction of expression (7)
is an approximation to the model at the data point by a tangent location model. This model
can be explicitly derived in the scalar parameter case by using Taylor series expansions, and
the location parameter is given by the expression for 3 following expression (23). In the vector
parameter setting, the existence of a location model approximation to the original model, to
O(n~"), can be established (Cakmak ez al., 1994), but the form of the location parameter is
typically not available explicitly. The array V(#) based on pivotals for independent scalar co-
ordinates y; does give a location model approximation, and in that sense is an O(n~!) default
prior. A reviewer has suggested a simpler way to interpret the role of the sensitivity matrix V(6)
in the default prior (7): this prior gives more weight to parameter values that have more influence
at the data point. Operationally expression (7) provides a rescaling on the parameter space so
that in the new parameterization each parameter value has the same influence at the data point.
However, in the case of non-linear parameters, as discussed in Section 4, more is needed to
target the parameter of interest properly.

We have not discussed whether or not posteriors based on W(#) are proper. The development
is local to the data point, and several approximations are made that assume that 6 is within
O(n~1/2) of the maximum likelihood estimate 6. This suggests that posteriors would need to be
checked case by case. It is possible, however, that the data dependence is an advantage in this
regard. As an example, consider the three-parameter Weibull distribution with density function

_ )1 _o\P
f(y;9):WeXp{—<y77z/}> } y>. (3D

This model has a discontinuity related to the end point parameter, so the derivations here are
just suggestive. Although the prior (7) based on linking to the maximum likelihood estimate
cannot be constructed as v is not obtained from the score equation, it is possible to compute
V(6) formally by using equation (5), with fixed quantile z={(y —v)/5}”. This gives the volume
element form

1
V() V(O)|'/? o — 2 ()0, 1),
nB
where

h(y0, ) =200 — )2 G =) log? (3) — ) — {Z0P — )2 log(y) — 1) }2.

Lin et al. (2009) proposed a combination reference or right Haar prior for this model which is pro-
portional to 1/n0 and noted that the posterior is improper unless the range of ¢ is restricted. The
factor i (y°, 1) seems to enforce a restriction on the range of v, since it is undefined for ¢ > y?l) .
To summarize, the main conclusions that emerge from the developments in this paper are that
priors that ensure calibration of the resultant posterior inferences need to depend on the data,
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and that a global prior ensuring this calibration is not possible to address non-linear parame-
ters of interest unless the nuisance parameter is a scalar. Other approaches to deriving targeted
priors for the full parameter space have analogous difficulties. The Welch—Peers approach leads
to a family of priors 7(6)dé ocl1 (0) g(A) and efforts to choose a unique form for g(-) have
had limited success. The reference prior approach requires care as well in the construction of
targeted priors with vector nuisance parameters: in particular the parameters need to be ordered
and grouped, and the results depend on this choice.

These results suggest that a completely general calibration of Bayesian posterior inferences is
not possible through the choice of the prior, and that calibration needs to be checked case by case.
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Appendix A

A.1. Example 3: background on transformation models
The parameter 6 of a transformation model is an element of a transformation group that operates smoothly
and exactly on the sample space of the model; for background details see Fraser (1979). The response y is
then generated as y =6z where z is an error or reference variable on the sample space with density g(z). An
observed value y =" then determines that the antecedent realized error value, say z”, such that Gy’ =Gz",
and this subset is an ancillary contour.

Conditioning on the identified subset glves y=~0z where the connection between any two elements is
one to one when the remalmng variable is held fixed. The conditional model has the form f(y;6)dy=

G(0~'y) dp(y) where du(-) is the left invariant measure.

The notation is simplified if the group co-ordinates are centred so that the identity element is at the

maximum density point of the conditional error density; thus G(z) < g(e) where e designates the identity

element satisfying ez = z. The maximum likelihood group element 6(y) is then the solution of 6~'y=e¢
which gives 0(y) = y. We then have from expression (7) that the default prior is
dy d(02)
w(0)|do = do= do 32
w@ldo=|5 ’ @ (32)

where the differentiation is for fixed reference value z with the subsequent substitution 8z = y° or z=z%(0) =
2(»°,0). The Jacobian can be evaluated by using notation from Fraser (1979), page 144; let J*(h;g) =
|dgh/0h| with variable g and also J*(g) = J*(g;e); this gives dv(g) =dg/J*(g) where dv(g) is the right
invariant measure. We then have dfz = J*(6z) dv(z) with 6 as the variable. Then with 6z set equal to y°
we obtain

dfz=J*(")dv(02)
=J* (") dv(6)

using the right invariance of v; this is a constant times the standardized right invariant measure dv(6) on
the group. We thus have that the default prior (32) is 7(0) df = cdv ().

A.2. Section 4: rescaling the parameterization of the approximating exponential model
The exponential model approximation (19) to a general model depends on 6 only through the observed
log-likelihood function /() and the observed log-likelihood gradient function ((6). The r{f-approximation
(20) is computed entirely within this model, with log-likelihood function

1(0:5)=1(0) +¢'(0)s (33)

and observed data s =0.
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For scalar 6 and ¢ we have 15, (0) =1,(0) =15(0) <p;1(9) where the subscripts as usual denote differen-
tiation. Then differentiating again we obtain

Ligo) (0) =1, (0) =Las (8) 05 (0) = 14(8) pus(O)p” ().

An analogous formula is available for the vector case by using tensor notation.

Now consider a vector 8 = (1, A) with scalar components. The information j,» (f) concerns the scalar
parameter model with ¢ fixed. This model can have curved ancillary contours on the initial score space
{s} if for example ¢ is not linear in ¢ (#). Correspondingly the differentiation with respect to (A) requires
the use of the w-metric for A given v and the results indicate the use of the standardization }° oo =1. From
the preceding scalar derivative expression we obtain

Jon @ = i @A) = 1,(0) e (@) (0)] 7,

where as usual [y |> = |\ @a .

Now consider the nuisance information ji,»,)(?,) calculated at a point ¢,, on the profile curve C,, from
observed data: see Fig. 2. The observed log-likelihood function has a maximum at ¢, when examined
along the contour with v fixed or when examined along the tangent contours with x fixed. But the neg-
ative Hessian with respect to A or () will typically differ on two contours unless ¢, =, i.e. unless 1 is
at its maximum likelihood value ). We seek an expression for the curvature ji »,)(,) along the contour
of the linear parameter x. The tangent plane to the likelihood at &, is [, ($,) (¢ — $,,) =0; and the tilted
likelihood

1) =1() = 1,(D) (0 — B,)

has maximum at ¢,,; and accordingly the negative Hessians along - or x-contours are connected as

j()\,()\x) (95@») = j()\)\)(saw) - l(,a((fau‘)) PAN (@w)-

A.3. Linear parameters and marginalization paradoxes

Dawid et al. (1973) showed that in some cases it is not possible to construct a prior for which the inference
that is obtained by marginalizing the posterior distribution for the full parameter is consistent with that
obtained by using a prior distribution on the parameter of interest and applying it to the likelihood func-
tion from the marginal model. The normal circle problem of example 2 is a simple example of this, with
the reduced model being that for 72 = y? + 3, which has a distribution depending only on the parameter of
interest 1. One conclusion of Dawid ez al. (1973) is that improper priors for vector parameters may lead
to anomalous results for inference about component parameters. The default priors of Section 2 share this
drawback and are only appropriate for marginal inference on component parameters that are consistent
with location-type models inherent in their construction. We call such component parameters linear.

Formally, we call a parameter contour ¥ (6) =, linear if a change d\ in the nuisance parameter A for
fixed 1) =1y generates through expression (6) a direction at the data point that is confined to a subspace
free of A and with dimension equal to dim(\). This is an extension of the result for f(y, —6,, y» — 6,) where
a change in 6, applied to y; =6, +z; and y, =6, + z, gives the y,-direction which corresponds to fixed y;.
For the normal circle example we note that the radius ¢ is curved but the angle « is linear.

The linearity condition defines a location relationship between the nuisance parameter A for fixed ¢
and change at the data point. As such it provides an invariant or flat prior for the constrained model, and
thereby leads to a marginal model with the nuisance parameter eliminated. This avoids the marginalization
paradoxes and parallels the elimination of a linear parameter in the standard location model.

We now consider a two-parameter model parameterized by 0=(01, 6,), with parameter of interest ¢)(6),
and develop the linear parameter that coincides with () in a neighbourhood of the observed maximum
likelihood value 6°. From expression (6) we have

df, = w1 (0) d6; +w12(0) dbs,

- 34
doy =wy1(0) by 4+ wny(0) dbs,

which can be inverted using coefficients w'/(0) to express d@ in terms of dé.

First we examine the parameter 1(0) near §° on the parameter space and find that an increment

(d6y,d6,) with no effect on v(f) must satisfy dv(0) = $0dO, 4+ 9 df, =0 where v;(0) = 91(0) /06, i.e.

do, = — ()9 /9?) db. Next we use expression (34) to determine the corresponding sample space increment
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at 6°, and obtain

R 0 20 g 0
@ _ _W(l)lwz + ”’(1)277/)1 _ ‘.
i 0 0 g A0 0
d02 b, + 0,0, €
thus (cy, ¢2) so defined gives a direction (cy, ¢2)’ df on the sample space that corresponds to no i-change.

Finally we use the inverse of expression (34) to determine the parameter space increment at a general point
0 that corresponds to the preceding sample space increment, giving

(W@ + w2 (0)cy
dg= ( w(@)c, +w? (@) e, ) dr, 35

as a tangent to the linearized version of ¢)(#). We then have either the explicit radial integral solution

0:90+/1 WHB + (1 e ther + w26 + (1, ) i}es dr
o \w2{0" + (cr.c)tyer + w2 {0 + (cr.c)t}er )

which describes the radial solution of the differential equation (35), or an implicit equation 6, =6,(6,) as
a direct solution of the differential equation
de, _ w2l (@), +w?? (0)c,

do, — wll(@e +w2@)cy

This defines to second order a linear parameter that is equivalent to ¢ (6) near 6°.

A.4. Example 10: linearity with the regression model

We reconsider the regression example 1, but for notational ease restrict attention to the simple location—
scale version with design matrix X =1. We construct the linear parameter that agrees with the quantile
parameter -+ ko near 6° for some fixed value of k. From W(#) in that example we obtain

di=du+ (3" - pydo/o,
d6=6"do /0.

(36)

For sim(}alicity here and without loss of generality due to location—scale invariance, we work with observed
data (4 ,69=(0,1) and have

di=dp—pdo/o,

dé=do/o. 37

Inverting this gives

dp=di+pds,

do=ods.

(3%)

First we examine 4+ ko in the neighbourhood of 6° on the parameter space and have that an increment
(du, do) must satisfy d(;+ ko) =0 at §° = (2%, 6°) = (0, 1); this gives du=—k do at °. Next we determine
the corresponding increment at §° on the sample space {(fi, ) }; from expression (37) we have dji =dp and
dé =do at this point, which gives d/i = —k dJ. Finally we determine what the restriction dfi=—k dJ on the
sample space implies for (du, do) at a general point on the parameter space; from expression (38) this is

du  p—k

do o
with initial condition (i, o) = (0, 1). This gives u=—k(c — 1) or pu+ ko =k, which shows that pu+ ko is
second order linear.

A.5. Example 11: linearity for the normal case on the plane

For the normal circle example 2 with parameter of interest ¢ = (67 + 63)!/2

, the increment on the parame-
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ter space at 6° with fixed ¢ satisfies df; = — tan(4°) d6, = —(39/y%) d6,. This then translates to the sample
space at (), y9) by using the specialized version of expression (34) to give dy, = —(9/y?) dy;, and this then
translates back to a general point on the parameter space by using the specialized version of expression
(35) to give a line through §° described by df, = —(y9/y?) d6;, which is perpendicular to the radius and
thus tangent to the circle through the data point; this is the linear parameter equivalent to ) near 6, and
is fully linear in the location parameter 6.

An extension of this linearity leads to a locally defined curvature measure that calibrates the margin-
alization discrepancy and can be used to correct for such discrepancies to second order (Fraser and Sun,
2010).

A.6. Strong matching and information approximation
In the scalar case, strong matching of Bayesian and frequentist approximations gives the expression for
the prior as

w(0) _dBO) _ 1s(0:)")
m(fo)  do P(0) — (0

where d3(0) is a locally defined linear parameter (Fraser and Reid, 2002).
If the model is a full exponential family with log-likelihood function /() = ¢ — k(#) then the location
reparameterization satisfies to second order

dpe) ' =K® KO —K©@")

dg 0—6° 0—6°
3 = éO) k//(éO) + %(9 _ éO)Q k///(éO)
B 0—6°

=k"(@"){1+ 10— 0% k") /k"(6")}:
this agrees to the same order with the usual Jeffreys prior
il/Z(e) :k//(e)l/Z — {k//(éo) +(0— é‘o) k///(é‘O)}l/Z :k//(e"())lﬁ{l + %(0 _ éO) k///(éo)/k//(é())}.

The same argument can then be applied to the approximating exponential model (19) as used along the
profile curve and leads to the approximation that is used at expression (25).
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