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Abstract

Statistical theory aims to provide a foundation for studying the collection
and interpretation of data that does not depend on the particular details of the
substantive field in which the data is being considered. This gives a systematic
way to approach new problems, and a common language for summarizing
results; ideally the foundations and common language ensure that statistical
aspects of one study, or of several studies on closely related phenomena, can in
broad terms be understood by the non-specialist. We discuss some principles
of statistical inference, to outline how these are, or could be, used to inform
the interpretation of results, and to provide a greater degree of coherence for
the foundations of statistics.

1 Introduction

A healthy interplay between theory and application is crucial for statistics, as no
doubt for other fields. This is particularly the case when by theory we mean founda-
tions of statistical analysis, rather than the theoretical analysis of specific statistical
methods. The very word foundations may, however, be a little misleading in that
it suggests a solid base on which a large structure rests for its entire security. But
foundations in the present context equally depend on and must be tested and revised
in the light of experience, and assessed by relevance to the very wide variety of con-
texts in which statistical considerations arise. It would be misleading to draw too
close a parallel with the notion of a structure that would collapse if its foundations
were destroyed.
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The idea that the essence of all such general considerations can be captured
within a simple framework, let alone a simple set of mathematical axioms, seems
dangerously naive. See, for example, Fisher (1956, Ch. 3) for remarks on the need
for a range of forms of statistical inference.

We shall not in this short paper discuss statistical decision theory, important
though that is. Of course many investigations involve a decision-making element,
but most commonly the role of statistics is to summarize evidence in a clear and
cogent form, not explicitly to make irrevocable decisions. For example, data may
be consistent with two quite different interpretations, indicating the appropriateness
of two different decisions. Statistical analysis may end with an indication of the
possibilities and associated uncertainties: decision analysis ends with the choice of
a single decision, even if essentially arbitrarily. Note though that the best action in
such cases may be a search for a third decision, so far overlooked; the formulations of
general theory are rarely really closed. Further, formal treatments of decision theory
are typically based on maximizing expected utility, whereas Simon’s (1956) notion
of satisficing may be more appropriate, especially when more than one individual is
involved. This is because of the general fragility of formulations that are intrinsically
and strongly personalistically based.

We exclude also comments on prediction of future observations as contrasted
with estimation of unknown parameters. In Bayesian discussions there is no formal
distinction in that the objective is to find the conditional distribution of the feature
of interest given the data and the prior. In frequentist theory too a formal parallel
can be established with testing the consistency of potential future data with the
current data. In most formulations it is assumed that the values to be predicted are
generated from the same random system as the data, often a formidable assumption.

In what follows we concentrate on formal issues connected with the assessment
of uncertainty. There are of course many challenging aspects of statistical work that
are not covered by this.

We discuss first the role of probability, which is central to most but not all formu-
lations of statistical issues; see for example Breiman (2001) for a more algorithmic
emphasis. We then discuss some of the classical concepts of statistical theory, some
insights from asymptotic analysis, and some thoughts on the relevance of these con-
cepts for current developments in statistics and the analysis of data.

2 Role of probability

Kolmogorov’s axiomatization of probability theory liberated the theory of probability
from discussions of the meaning of probability, enabling it in particular to become
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a vibrant part of modern pure mathematics. Statisticians do not have the luxury
of escaping such concerns with meaning: indeed in a sense most discussions of the
last 200 years and more of the basis of statistical inference have centred around
the relation between contrasting views of the meaning of probability. We shall not
discuss the main alternative forms of axioms, which concern, for instance, possible
modifications needed in quantum mechanics, the development of upper and lower
probabilities (Walley, 1990), and the development of belief functions, often called
Dempster-Shafer theory; an overview of the latter is available in Yager and Liu
(2008).

Very particularly statistical theory continues to focus on the interplay between
the roles of probability as representing physical haphazard variability, what Jeffreys
(1961) called chances, and as encapsulating in some way, directly or indirectly, as-
pects of the uncertainty of knowledge.

2.1 Probability as representing empirical variability

There are at least four related but different approaches to the connections between
data and a target underlying object of study:

• the data are regarded as a random sample from a hypothetical infinite popula-
tion, frequencies within which are probabilities, some aspects of which encap-
sulate the target of inference;

• the data form part of a long real or more commonly somewhat hypothetical
process of repetition under constant conditions, limiting frequencies in which
are probabilities, again some aspects of which represent the target of inference;

• either or both of the above, combined with an explicit description in idealized
form of the physical, biological, . . . data generating process;

• either or both of the first two approaches may be used solely to describe the
randomization used in experimental design or in sampling an existing popula-
tion, leading to so-called design-based analysis.

Fisher (1956, pp. 31-36) was emphatic that he intended the first of these not
the second. For discussions of, for example, climate change, the second or the third
would be appropriate; the stochastic process of interest need not be required to be
stationary.

We shall not discuss the last aspect in this paper, important though it is for
the rather special applications in which it is relevant. The common feature of the
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other approaches is that they represent features of the “real” world, of course in
somewhat idealized form, and, given suitable data, are subject to empirical test and
improvement. Conclusions of statistical analysis are in the first place expressed in
terms of interpretable parameters describing such a probabilistic representation of
the system under study.

2.2 Probability as uncertain knowledge

The form of probability outlined in the previous section is related to, but sharply
different from, the consideration of probability as measuring strength of belief in some
uncertain proposition, in a statistical context perhaps that an unknown parameter
of interest lies in a specified range. There are at least three broad ways in which this
issue can be addressed:

• We may avoid the need for a different version of probability by appeal to
a notion of calibration, as measured by the behaviour of a procedure under
hypothetical repetition. That is, we study assessing uncertainty, as with other
measuring devices, by assessing the performance of proposed methods under
hypothetical repetition. Within this scheme of repetition probability is defined
as a hypothetical frequency. The precise specification of the assessment process
does of course need care, often requiring some notion of conditioning.1

• Probability may measure rational, supposedly impersonal, degree of belief given
relevant information. This has a long history, the most notable account being
that of Jeffreys (1961).

• Probability may measure a particular person’s degree of belief, subject typically
to some constraints of self-consistency, an idea going back to F.P. Ramsey
(1926) and developed to a refined level by de Finetti (1937) and Savage (1954).
This approach seems intimately linked with personal decision making.

A broad-ranging view embracing all these perspectives was given by I.J. Good (1950).

2.3 Brief assessment

We will in this section simply outline comments on the issues implicitly raised by
these distinctions.

1Note that the formal accept-reject paradigm of the Neyman-Pearson theory, if taken literally as
defining a mode of implementation, would be an instance of decision analysis and as such outside
the immediate discussion.
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Even if an empirical frequency-based view is not used directly as a basis for
inference it is unacceptable if a procedure yielding regions of high probability in
the sense of representing uncertain knowledge were much of the time to be poorly
calibrated: that is, if it would, if used repeatedly, give systematically misleading
conclusions.

The standard accounts of probability assume total ordering of probabilities. For
some purposes this may be reasonable but for interpretation is it always sound to
regard a probability p found from careful investigation of a real-world effect as equiv-
alent to a personal judgment based on scant or no direct evidence? That is, are the
standard axioms of probability theory applicable when totally different types of evi-
dence are mixed?

Personalistic approaches merge seamlessly what may be highly personal assess-
ments with evidence from data, possibly collected with great care. This may well
be essential for personal decision-making but is surely unacceptable for the careful
discussion of the data and the presentation of conclusions in the scientific litera-
ture. This is in no way to deny the role of personal judgement and experience in
interpreting data; it is the merging that may be unacceptable.

A great attraction of Bayesian arguments is that all calculations are by the rules of
probability theory. Another attractive feature, in principle at least, is the possibility
of assimilating external evidence. This is at the heart of personalistic approaches, but
a great many applications of Bayesian arguments rely explicitly or implicitly on some
form of reference prior representing vague knowledge; these are also called objective,
or non-informative priors. This is increasingly questionable as the dimension of the
parameter space increases.

Finally, a view that does not accommodate some form of model checking, even
if very informally, is inadequate. Note very particularly that this includes mutual
consistency of data and prior where a Bayesian formulation is used. Clear discrepancy
may indicate a systematic flaw in the data, a mis-formulation of the statistical model
or a misconception in formulating the prior. Priors that are consistent with all
possible data configurations presumably play a merely formal role in the analysis.

In principle in most Bayesian arguments the prior distribution aims to encapsulate
all relevant information apart from that in the data under analysis. As such the word
prior does not necessarily mean previous in time. Thus, particularly in studies that
last for a long time period, the prior may change from that used in planning the study
and in particular cases may be influenced either by the experience of collecting the
data or even by the data themselves. As an extreme example suppose the prior
depends in part on a theoretical calculation of likely outcomes and a clear clash
with that theory leads to the discovery of a mathematical mistake in the theory
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which, when corrected, resolves the discrepancy. The prior then depends on the
data in a totally rational way. The assumption that the prior remains constant
in time, which is typically not part of formal Bayesian theory, is called temporal

coherency and has strong consequences. It will, of course, often be reasonable. A
more general comment about external or prior information is that the choice is not
between Bayesian arguments that include it and non-Bayesian arguments that ignore
it. Rather it is between including such information quantitatively by a probability
distribution and merging it seamlessly with the data versus using it largely or entirely
qualitatively.

An expansion of these comments is given in Cox (2006, Ch. 5). A lively discussion
of calibration of Bayesian approaches is given from several points of view in Berger
(2006), Goldstein (2006), Browne and Draper (2006) and the extensive discussions.
Wasserman (2008) considers this further, in the context of models and methods
relevant for machine learning.

A non-Bayesian approach to interval estimation was set out by Fisher (1930) and,
subject to some monotonicity conditions, leads for continuous distributions to a for-
mal distribution for the unknown parameter, termed by Fisher a fiducial distribution.
Indeed a single such statement about a parameter and a single probability statement
about an event seem evidentially essentially equivalent. The idea became controver-
sial only later when such distributions were manipulated as probability distributions:
Lindley (1958) showed this to be inappropriate in general. There is recently a re-
newal of interest in such approaches. Xie and Singh (2013) and the accompanying
discussion is a good entry point to this literature.

3 Simple test of significance

While discussions of the meaning of probability have proved difficult to resolve,
there is more widespread agreement on the importance of some statistical concepts
that serve as a basis for development of statistical theory even though there is some
disagreement about how the principles should be implemented. The great majority of
the formal discussion is based on the specification that there is a family of probability
models one of which has, to an adequate approximation, generated the data under
analysis. We start, however, from a more primitive viewpoint, namely that we have
a null hypothesis, H0, which specifies numerically the distribution of either the full
data or certain aspect of the data. We wish to examine consistency with that null
hypothesis. Further we suppose chosen a test statistic, t(y), such that the larger its
value the stronger the discrepancy of concern and such that the distribution of the
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random variable T under H0 is known.2

In other words we specify largely qualitatively the type of departure from H0

of potential interest; any monotonic function of t would be equivalent. To assess
consistency with H0 we have an observed value of t, a probability distribution for T
were H0 to be true and the specification that the larger t the poorer the consistency.
There seems little choice in this formulation but to use the p-value, that is

p(t) = P (T ≥ t;H0). (1)

If this is a modest number, the data are as consistent with H0 as could reasonably
be expected. If p is small it is suggestive of inconsistency with H0 in the direction
indicated by large values of T . The observed value p(t) can be given the hypothetical
interpretation that if the observations were regarded as just decisive against H0 then
p(t) would be the long-run proportion of times in which H0 would be falsely rejected
when true.

There are two broad situations in which this formulation may be relevant. In
one H0 is a subject-matter hypothesis, suggested perhaps by theory, that may to a
reasonable approximation be true. The other is where adequacy of a formal model,
itself forming H0, is to be assessed.

This is conceptually quite different from, although formally related to, other
formulations, such as that of Neyman-Pearson theory, Bayesian testing theory, and
formal two-decision problems. A parallel can be established by extending the null
hypothesis distribution into an exponential family form with a factor exp(tλ) (Cox,
2006, §3.5), but this may seem very contrived, particularly in testing model adequacy.

There is, of course, a substantial literature on the interpretation and misinter-
pretation of p-values.

4 Classical principles for inference

We from now on assume that a probability model, in the form of a distribution
function F (y; θ) or a density function f(y; θ) has been formulated; that θ ranges
over a space Θ leading to a family of such models, and that data has been or is to
be observed that is provisionally assumed to follow some member of the family of
probability models. These are, of course, formidable assumptions from an applied
viewpoint. McCullagh (2002) emphasizes the importance of careful delineation of

2Fisher considered that at least for discrete problems the test statistic could be minus the
probability of the data; see, for example, Fisher (1956, pp. 37-). This could, however, lead to some
artificiality.
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design, covariate and treatment variables as an essential part of the correct specifica-
tion of a statistical model. We do not consider here models in which the parameter
is an unspecified function, and hence infinite dimensional.

• The sufficiency principle supposes that there is a factorization of the model of
the form

f(y; θ) ∝ f1(s; θ)f2(y | s), (2)

with minimal s. The first and most commonly emphasized part of the principle
is that inference about θ should be based on the statistic s = s(y), which is
sufficient for θ in this model. The second part is that the conditional distri-
bution of the data, given s, being a fixed and known distribution, is available
for assessing model adequacy, for example in the way outlined in the previous
section.

• The conditionality principle states that if the minimal sufficient statistic can
be split into components (s1, s2) such that there is a factorization of their joint
distribution of the form

f(s; θ) ∝ f1(s1 | s2; θ)f2(s2), (3)

that inference about θ should be based on the conditional distribution of s1,
given the ancillary statistic s2.

• The likelihood principle states that inference should be based on the likelihood
function; more precisely the equivalence class of functions of θ determined by
the model, in which the observed data are fixed:

L(θ) ∝ f(y; θ). (4)

We take this in the strong form that that only the directly observed likelihood
is relevant, thus excluding dependence on the sampling distribution of statistics
derived from the likelihood function.

4.1 Sufficiency

The primary role of sufficiency is essentially that of simplification by dimension
reduction; it enables inference to proceed based on a reduction of the set of observed
or observable values to a potentially much smaller number of quantities, without
loss of information. The interpretation of a sufficient reduction as giving a direct
partitioning of the sample space, is outlined in many textbooks, for example Cox &
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Hinkley (1974, Ch. 2) or Lehmann & Romano (2005, Ch 1). Sufficiency is closely
tied to the theory of exponential families, as in general these are the models which
permit substantial dimension reduction via sufficiency. A mathematical discussion
of the sufficiency of the likelihood map, i.e. the equivalence class of functions L(θ; ·)
is given in Barndorff-Nielsen et al. (1976), and extended in Fraser et al. (1997) and
Fraser and Naderi (2007).

4.2 Conditionality

Conditionality is in a sense the least technical of the principles and at the same time
the most elusive to formulate. The motivation is that if we want to calibrate methods
of statistical analysis by their performance in hypothetical repetition, it is impor-
tant that the repetitions match in some sense the very particular set of data under
analysis. This demands conditioning on features that might distinguish in some im-
portant respect the ensemble of repetitions from the data; these are sometimes called
‘relevant subsets’. The most important example of this idea is to normal-theory lin-
ear models in which also the explanatory variables have a probability distribution.
Ancillarity shows that under rather general circumstances inference about the re-
gression parameters should be conditional on the observed values of the explanatory
variables. Another important application is to the class of transformation models,
in which a unique ancillary statistic can be obtained by considerations of invariance,
and the conditional inference in such models was called structural inference in Fraser
(1961, 1968). In a few cases non uniqueness in the choice of ancillary statistics has
to be resolved by somewhat ad hoc criteria.

4.3 Likelihood principle

This is formulated in (4) in its strongest form: the data should be used only in terms
of the observed likelihood function. The only inferences which are consistent with
that likelihood principle are a non-probabilistic use of the likelihood function (see,
e.g. Royall, 1997 and Edwards, 1960) as defining regions of the parameter space that
are relatively more or less likely, or Bayesian inference, which derives its probabilities
via the prior distribution.

If there are no nuisance parameters the non-probabilistic approach indicates, for
example, graphical summarization of the data by plotting the likelihood function by
a curve or contour plot. This is ineffectual, however, if there are nuisance parameters,
particularly if there are many such.

The use of the strong likelihood principle in the development of Bayesian infer-
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ence is discussed, with many examples, in Berger and Wolpert (1984). One point of
interest noted there is that Bayesian approaches with priors based on model char-
acteristics, that is, most ‘non-informative’ priors are not consistent with the strong
likelihood principle.

Conditionality does not arise as a specific issue, because inference is conditioned
on the full data y, and sufficiency is automatically incorporated, since the likelihood
function depends the data only through the sufficient statistic.

4.4 General comments

In nearly all applied work the parameter θ will be comprised of parameters of direct
interest to the problem at hand, and additional parameters typically representing
aspects of secondary interest; for example the parameters of interest may govern the
mean response, possibly as a linear or nonlinear function of some auxiliary variables,
while secondary parameters might be related to the variability, and/or other aspects
of the distribution such as the shape, or tail weight, or other features relevant to the
problem. Such parameters may be essential to complete the specification but not
themselves the focus of subject-matter concern. Different phases of the analysis of a
single set of data may well involve different choices of the parameter of interest.

In its simplest form we may write θ = (ψ, λ), with ψ the parameters of interest
and λ usually referred to as nuisance parameters. Unfortunately, the definitions of
sufficiency and ancillarity for ψ immediately become more difficult, because it is
rarely the case that factorizations analogous to (2) and (3) can be obtained. In the
ideal case, where

f(y;ψ, λ) ∝ f1(s;ψ)f2(t | s;λ),

or possibly f(y;ψ, λ) ∝ f1(s;ψ)f2(t | s; η), where η = η(ψ, λ) and the parameter
spaces for (ψ, η) and (ψ, λ) are the same, inference for ψ can be cleanly based on
the model f1; s is sufficient for ψ and ancillary for λ. This ideal case rarely obtains,
more usually either

f(y;ψ, λ) ∝ f1(s;ψ)f2(t | s;ψ, λ), or f(y;ψ, λ) ∝ f1(s;ψ, λ)f2(t | s;ψ)

and the situation is much less clear. Some aspects of this are discussed in more detail
in Reid (1995).

Bayesian methods, being based on the observed data, avoid this consideration,
but at the expense of specification of prior probabilities for a possibly large number
of parameters, which entails another set of difficulties. Subjective information, the
relevance of which we have argued against in §2, will in any case rarely be available
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for complex models with large numbers of parameters. The extensive development of
reference priors and other forms of priors meant to be uninformative with respect to
the parameters, clearly indicates that such priors must be targeted to the parameters
of interest (Berger and Bernardo, 1992; Berger et al., 2009; Fraser et al., 2010).

The confidence distributions briefly mentioned at the end of §2 are typically
obtained by inversion of a pivotal quantity, which is a function of the data, y, and
parameter of interest ψ, with a known distribution. Using this known distribution
enables us to obtain a set of p-values for different values of ψ, variously called a
significance function or p-value function. Slightly more generally, a set of confidence
regions at various confidence levels can be used to define a confidence distribution for
ψ (Cox, 1958); in nearly all treatments these regions are assumed to be nested. The
usual t-statistic of normal theory is a simple example of a pivot leading to a p-value
function or providing a set of nested confidence intervals for the unknown mean of a
normal distribution. While important, the lack of a general recipe for constructing
pivotal quantities, has meant that they receive somewhat less attention in studies
of theoretical statistics. There has been a recent revival of interest in confidence
distribution functions; see Xie and Singh (2013), and Schweder and Hjort (2002) for
overviews and further references. For most problems the notion of an approximate
pivotal quantity is needed, and these can be obtained from asymptotic theory, to
which we turn next.

5 Asymptotic theory

Consideration of distributions of inferential quantities as a notional sample size or
amount of information increases, and the approximations for use in inference sug-
gested by these, both simplifies and complicates the discussion. For example, notions
of approximate sufficiency and approximate ancillarity have been developed; see for
example Cox (1980) and McCullagh (1984), as well as Barndorff-Nielsen & Cox (1994,
Ch. 7). While asymptotic theory is often viewed as a means of generating approxi-
mate inference, for a general theoretical discussion it is perhaps more important for
the insight it gives into some foundational aspects.

In contrast to approximate sufficiency and ancillarity, the details of which are
complex, approximate pivotal quantities are used nearly routinely in applied work,
thanks in part to the development of robust software for optimization and root-
finding. So, for example, letting λ̂ψ denote the maximum likelihood estimator of the
nuisance parameter λ when the parameter of interest ψ is fixed, and defining the
profile log-likelihood function by ℓp(ψ) = logL(ψ, λ̂ψ), the standardized maximum
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likelihood estimator
(ψ̂ − ψ)j1/2p (ψ̂),

where jp(ψ) = −∂2ℓp(ψ)/∂ψ∂ψ
′, is an approximately pivotal quantity, as its asymp-

totic distribution is known to be, under suitable regularity conditions, normal with
mean 0 and covariance matrix the identity. Similarly

r2(ψ) = 2{ℓp(ψ̂)− ℓp(ψ)} (5)

is an approximate pivotal quantity following a χ2
d distribution, where d is the dimen-

sion of ψ. Either or both of these can be inverted to give confidence regions for ψ at
any desired level of confidence.

Improved approximations can be developed from more detailed study of the
asymptotic expansions involved, and when the parameter of interest is a scalar an
improved version of (5) is

r∗(ψ) = r(ψ) +
1

r(ψ)
log{

Q(ψ)

r(ψ)
}, (6)

where r(ψ) is the square root of (5), with the appropriate sign attached, and Q(ψ) is
a related pivotal quantity with the property that it has the same limiting distribution
as r(ψ), i.e. standard normal. In continuous models the distribution of r∗(ψ), under
the model f(y; θ) is also standard normal, but with a relative error of O(n−3/2) in
terms of the sample size for independent observations from the model, whereas the
relative error in (5) is O(n−1/2). In other words (6) is a large deviation result: the
practical implication of this is that the approximation often works very well in the
tails of the distribution, where small p-values are of interest.

A similar asymptotic analysis of the marginal posterior distribution in a Bayesian
analysis leads to

r∗B(ψ) = r(ψ) +
1

r(ψ)
log{

Qπ
B(ψ)

r(ψ)
}, (7)

where Qπ
B(ψ) depends on the prior π, as well as the first and second derivatives of the

profile log-likelihood function. The distribution of r∗B(ψ), in the posterior distribution
π(θ | y) ∝ f(y; θ)π(θ), is standard normal with a relative error of O(n−3/2) (DiCiccio
et al., 1990).

The approximately pivotal quantity Qπ
B(ψ) is

Qπ
B(ψ) = −ℓ′p(ψ)j

−1/2
p (ψ̂)

{

|jλλ(ψ, λ̂ψ)|

jλλ(ψ̂, λ̂)|

}1/2
π(ψ̂, λ̂)

π(ψ, λ̂ψ)
, (8)
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where jp(ψ) = −∂2ℓp(ψ)/∂ψ
2 is the analogue of Fisher information based on the

profile log-likelihood, jλλ(θ) = −∂2 logL(ψ, λ)/∂λ∂λT is the sub-matrix of the full
Fisher information matrix corresponding to the nuisance parameter λ, and, as above,
λ̂ψ is the constrained maximum likelihood estimator of λ when ψ is fixed. The factor
in braces in (8) comes from integrating out the nuisance parameters by Laplace
approximation.

The approximately pivotal quantity Q in (6) is more difficult to describe, as it
depends in general on the construction of an approximately ancillary statistic. A
number of examples are given in Brazzale et al. (2008, Chs. 3–7), where asymp-
totically equivalent versions due to Barndorff-Nielsen (1991) and Fraser (1991) are
presented and discussed. In exponential family models, with densities of the form

f(y;ψ, λ) = exp{s1(y)ψ + sT2 (y)λ− c(ψ, λ)}h(y), (9)

the expression for Q(ψ) is the standardized maximum likelihood estimator of ψ, with
a nuisance parameter adjustment:

Q(ψ) = (ψ − ψ̂)j1/2p (ψ̂)

{

|jλλ(ψ̂, λ̂)|

jλλ(ψ, λ̂ψ)|

}

. (10)

In regression-scale models, yi = xTi β + σei, with ψ a component of β, Q(ψ) is the
standardized score statistic for ψ, modified by a similar adjustment for nuisance
parameters. Explicit formulae for Q in a number of regression settings are given in
Brazzale et al. (2008, Ch. 8).

Detailed study of these approximations leads to the following insights into foun-
dational aspects:

• As n→ ∞, the Bayesian and frequentist inferences for ψ are the same, assum-
ing the prior is fixed. This has long been known, sometimes described as the
prior being ‘washed out’ by the data.

• The point of departure between Bayesian and frequentist inference appears at
the next order of approximation. This was discussed from a slightly different
point of view in Welch & Peers (1963), and articulated in this context in Pierce
& Peters (1994).

• A prior which leads to inferences equivalent to frequentist inferences at this
higher order of approximation must satisfy Qπ

B(ψ) = Q(ψ). These priors are
called strong matching priors in Fraser & Reid (2002).
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• These strong matching priors are specific to the parameter of interest, sug-
gesting that any prior which is calibrated in this sense for ψ is unlikely to
be calibrated for other components of θ. This also follows from Peers (1965),
which considered the extension to nuisance parameter of the results in Welch
& Peers (1963). The need to target the prior on the parameter of interest is
emphasized in the literature on reference priors (Berger & Bernardo, 1992).

• The addition of the approximately pivotal quantity Q(ψ) via (6) means infer-
ence is based on more than the profile log-likelihood function. In particular,
this adjusts for the estimation of the nuisance parameters, and this adjustment
is, in practical problems, much more important for the accuracy of the inference
than the distributional improvement (Pierce & Peters, 1992).

• A key step in the construction of the approximate pivotal Q(ψ) in (6) is mea-
suring the change of the log-likelihood function logL(θ; y) with small changes in
the data, keeping relevant ancillary or approximately ancillary statistics fixed.
As might be expected, this requires that the parameter space and the sample
space both be continuous; a slightly different argument is needed for discrete
data.

• There is no need to work with sufficient statistics in deriving formulae like (6):
since it is based on functions of the log-likelihood function it is automatically
a function of the sufficient statistic, although sometimes the calculations are
easier after a preliminary reduction by sufficiency. It is however imperative to
condition on an exactly or approximately ancillary statistic, except in the case
of linear exponential family models (9).

• It is shown in DiCiccio & Young (2008), building on work by DiCiccio et
al. (2001), that to O(n−3/2) parametric bootstrap sampling of r(ψ) under the
model f(y;ψ, λ̂ψ) is equivalent to that based on (6); see also Fraser & Rousseau
(2008). However the number of replications required to estimate small tail
probabilities may be prohibitive.

A development of model checking, using for example f(t | s) when factorization
(2) holds, based on these notions of higher order approximation is to our knowledge
not yet available.
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6 Discussion

We emphasized in §1 that foundations must be continually tested against applica-
tions. From this perspective, the strong likelihood principle is found wanting: a great
deal of applied work relies on the distribution of quantities based on the likelihood
function, such as the maximum likelihood estimator or the likelihood ratio statis-
tic. Similarly a great deal of applied work with Bayesian methods uses what are
hoped to be “non-influential” priors; the question is whether or not there really are
non-influential, particularly when high-dimensional parameters are involved.

Many applications of statistical ideas now current involve vast amounts of data,
or highly complex models, or both, and the question arises whether the principles
touched on here continue to be relevant to these settings. A principled approach is
surely necessary to avoid continued ‘discoveries’ based on spurious patterns or cor-
relations. While there are a number of applied contexts, many involving machine
learning, where prediction and classification using possibly complex black box ap-
proaches are adequate, for any analysis that hopes to shed light on the structure
of the problem, modelling and calibrated inferences about interpretable parameters
seem essential.

A recent report (National Research Council, 2013) highlighted the following “in-
ferential giants” for the study of massive data: assessment of sampling bias, inference
about tails, resampling inference, change point detection, reproducibility of analyses,
causal inference for observational data and efficient inference for temporal streams.
Sampling bias is of course an essential aspect of design and analysis of surveys and
experiments, topics that we are not addressing here, and efficient inference for tempo-
ral streams is perhaps mainly an issue of computation, but theoretical statistics, and
the classic concepts discussed above would seem to be important for the remainder.
For example, the ideas behind significance testing underly the development of false
discovery rates, and other methods for judging the importance of seemingly large
effects when a great many comparisons have been carried out. Sufficiency, or some-
thing much like it, is needed for successful implementation of approximate Bayesian
computation, which uses simulation to construct the likelihood function.

An issue arising if assessment of precision is required from large-data analysis
concerns internal correlations and undetected sources of variability leading to seri-
ous underestimation of potential errors if relatively standard methods are used with
their attendant strong independence assumptions. There are also broader strategical
issues. How best should a wholly new large set of data be approached; summary
analysis of the whole may be combined with very detailed analysis of suitably sam-
pled fragments. There are in a real sense theoretical issues involved, although ones
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possibly not easily captured within a mathematical formalism.
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