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Workshops

• Opening Conference and Bootcamp

• Statistical Machine Learning

• Optimization and Matrix Methods

• Visualization: Strategies and Principles

• Big Data in Health Policy

• Big Data for Social Policy
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2. ‘Big Data: it’s not the Data’

Volume, Variety, Velocity, Veracity, Beyond the Vs

3. Strategies for Big Data Analysis

Data Wrangling, Visualisation, Reducing Dimensionality, Sparsity and 
Regularisation, Optimisation, Measuring Distance, Representation Learning, 
Sequential Learning, Multi-Disciplinarity

4. Illustrations

Public Health, Health Policy, Law and Order, Environmental Sciences, 
Education, Mobile Application Security, Image Recognition and Labelling, 
Digital Humanities, Materials Science

WSC July 2017 12



Some highlights

13WSC July 2017



Some highlights

14WSC July 2017



15WSC July 2017



16

• natural gradient ascent

• uses Fisher information as metric tensor

Girolami and Calderhead (2011); Amari (1987); Rao (1945)

• Gaussian graphical model approximation to force 

sparse inverse

Grosse and Salakhutdinov (2016) 32nd Internat. Conf. on Machine Learning
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• model for is a logistic regression

• with odds ratio depending only on

• deep learning has ~10 layers, with millions of units 

in each layer 

• estimating parameters is an optimization problem
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Leung et al Bioinformatics 2014  

Brendan Frey, Infinite Genomes Project

FieldsLive January 27 2015
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• lasso penalty           

• is convex relaxation of 

• many interesting penalties are non-convex 

• optimization routines may not find global optimum
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• statistical error               neighbourhood of true value

• approximation error                    iterating over t

Wainwright FieldsLive Jan 16 2015

Loh and Wainwright JMLR 2015
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Visualization

• statistical graphics

– data representation

– data exploration

– filtering, sampling aggregation

• information visualization

• scientific visualization

• cognitive science and design
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January 3 2017

https://www.theguardian.com/global-development-professionals-network/2017/jan/03/using-data-visualisations-to-help-explain-the-global-obesity-explosion
https://www.theguardian.com/global-development-professionals-network/2017/jan/03/using-data-visualisations-to-help-explain-the-global-obesity-explosion
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“Even ‘Safe’ Pollution Levels Can Be Deadly”
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https://www.nytimes.com/2017/06/28/well/even-safe-pollution-levels-can-be-deadly.html?mcubz=0
https://www.nytimes.com/2017/06/28/well/even-safe-pollution-levels-can-be-deadly.html?mcubz=0
https://www.nytimes.com/2017/06/28/well/even-safe-pollution-levels-can-be-deadly.html?mcubz=0&_r=1&login=email&auth=login-email
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“Even ‘Safe’ Pollution Levels Can Be Deadly”
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Health Policy

Main conclusion

“In the entire Medicare population, there was significant 

evidence of adverse effects related to exposure to PM2.5

and ozone at concentrations below current national 

standards”

“Increases of 10 μg per cubic meter in PM2.5 … associated 

with increase in all-cause mortality of 7.3% (7.1 to 7.5) ”
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Health Policy

• Mortality

– beneficiaries of Medicare 2000 - 2012 (65+, US) – 61m persons

– age, sex, race, ZIP code, Medicaid status, date of death (censored)

• Exposure

– predicted annual average PM2.5 for each ZIP code, using a neural 

network incorporating satellite, land-use, meteorological, simulation 

from chemical transport model

• Analysis

– Cox-type regression analysis, with adjustment for spatial covariance 

Lee et al 1992

– Cox mixed-effect analysis random intercept location
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Health Policy

• Data Sources

– Behavioural Risk Factor Surveillance System -- confounders

– US Census – zip code level 

– American Community Survey – zip code level

– Dartmouth Atlas of Health Care – hospital level

– Medicare Current Beneficiary Survey -- confounders

– EPA Air Quality System – pollution 

– North American Regional Reanalysis  -- temperature, humidity

• 22m deaths,  65m persons, 460m person-years

• “these data provided excellent power to estimate the risk of death 
at levels below the current [standards]”      12μg
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Risk of Death Associated with an Increase of 10 μg per Cubic Meter in PM2.5 Concentrations 
and an Increase of 10 ppb in Ozone Exposure, According to Study Subgroups.

Di Q et al. N Engl J Med 2017;376:2513-2522
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http://www.sciencemag.org/content/347/6221.cover-expansion
http://www.sciencemag.org/content/347/6221.cover-expansion
http://repository.cmu.edu/jpc/all_issues.html
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Privacy

• “Big Data and Innovation, Setting the Record Straight: 

De-identification Does Work”
Privacy Commissioner of Ontario, July 2014

• “No silver bullet: De-identification still doesn’t work”
Narayan & Felten, July 2014

• Statistical Disclosure Limitation

• Differential Privacy

• Multi-party Communication
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What did we learn?

• Statistical models for big data are complex, 

high-dimensional
– inference is well-studied, but difficult

• Computational challenges include size and speed
– ideas of statistical inference get lost in the machine

• Data owners understand 2., but not 1.

• Data modellers understand 1., but not 2.

• Data science may be the best way to combine these
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That was yesterday
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That was yesterday

Data science programs “springing up like mushrooms after rain”

Berkeley, Hopkins, CMU, Washington, UBC, Yale, Toronto, …
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http://news.harvard.edu/gazette/story/2017/03/harvard-launches-sweeping-data-science-initiative/
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What is data science?

• a course?

• a set of courses?

• a job?

• a technology?

• a new field of research? 

• a collaboration?
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Data Science Program(s) JHU DSS

• mathematical reasoning

• statistical theory

• statistical and machine learning methods

• programming and software development

• algorithms and data structure

• communication results and limitations
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http://arxiv.org/abs/1609.00037v1

WSC July 2017
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Data Science Research

• data collection and data quality

• large N, small p  
– computational strategies, e.g. Spark, Hadoop

– divide and conquer

• small n, large p 
– inferential and computational strategies

– dimension reduction

– post-selection inference

– inference for extremes

• ‘new’ types of data: networks, graphs, text, images, …
– “alternative sources”
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https://www.nsf.gov/pubs/2016/nsf16615/nsf16615.htm
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… Data Science Research Leek 2017

• collaboration and communication

• data wrangling, database development, record linkage, privacy

• replicability, reproducibility, new workflows

• visualization

• outside the ivory tower -- industry, government, 

media, public

https://simplystatistics.org/2017/07/19/my-unfunded-hhmi-teaching-professors-proposal/
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The push back
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How big data threatens democracy and increases inequality
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How big data threatens democracy and increases inequality

“if the assessment never asks about race, 

how could the algorithm throw up racially 

biased results?”  
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How big data threatens democracy and increases inequality

“if the assessment never asks about race, 

how could the algorithm throw up racially 

biased results?”  

“Credit scores are used by nearly 

half of American employers to 

screen potential employees”
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The push back
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“Big data is neither easier nor faster nor cheaper”

“Building a database doesn’t create its own uses”

https://beatricecherrier.wordpress.com/2017/03/22/are-the-promises-of-big-data-in-social-sciences-being-betrayed/
https://beatricecherrier.wordpress.com/2017/03/22/are-the-promises-of-big-data-in-social-sciences-being-betrayed/


Privacy
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http://www.nature.com/news/the-deepmind-debacle-demands-dialogue-on-data-1.22330
http://www.nature.com/news/the-deepmind-debacle-demands-dialogue-on-data-1.22330


Privacy
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• DeepMind was to develop an app to check test results for signs of 
acute kidney injuries 

• the arrangement failed to consider how patients expect their data 
to be used, and by whom

• had the project proceeded under open contracting, it would have 
been subject to public scrutiny

• it is unclear why an app for kidney injury requires the identifiable 
records of every patient seen by three hospitals over a five year 
period

http://www.nature.com/news/the-deepmind-debacle-demands-dialogue-on-data-1.22330
http://www.nature.com/news/the-deepmind-debacle-demands-dialogue-on-data-1.22330


Caution can be a good thing

79

“Digital Hippocratic Oath”
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Caution can be a good thing
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“…from data we will get the cure for cancer as well as 

better hospitals; 

schools that adapt to children’s needs making them 

happier and smarter;

better policing and safer homes; 

and of course jobs.”

Guardian 2 July 2016
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