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Why likelihood?
likelihood function depends on data only through sufficient
statistics
“likelihood map is sufficient” Fraser & Naderi, 2006
provides summary statistics with known limiting distribution

leading to approximate pivotal functions, based on normal
distribution

in some models the likelihood function gives exact
inference

“likelihood function as pivotal” Hinkley, 1980

likelihood function + sample space derivative gives better
approximate inference
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Summary statistics and approximate pivotals

e model f(y;0),y €R", 0 c RY
* log-likelihood function 00;y) =logf(y;0)+ a(y)
e score function u(f) = 0¢e6;y)/00

maximum likelihood estimate  § = arg sup, ¢(6; y)

log-likelihood ratio w(0) = 2{¢(0; y) — ¢(0; y)}
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Approximate pivotals
V(@ —0) ~ Ng{0,;7'(6)}
w(0) = 2{¢(f) — £(0)} ~ 5
#U(e) < Na{0.j(8))
1 U0y £ N0, 76
7nU0 = No{0.Z(6)}
j0)y=—"0)/n  Z(0) = E{j(0)}
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...approximate pivotals

log-likelihood function

log-likelihood
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...approximate pivotals

log-likelihood function

log-likelihood

-
A
[a]
T T T T T T T T
6 17 18 19 20 21 22 23

0

9/30



Likelihood inference for simple problems Higher order approximation Harder problems Approximations to likelihoods
000000080 0000000 0000 00000000

...approximate pivotals

log-likelihood function

T 1.92 w2

log-likelihood
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...approximate pivotals

w(9) = 2{¢(f) — €(0)} ~ X3

(a)
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Likelihood as pivotal
Example: location model f(y;0) = [IL; fo(y; —0), 0€R

Fisher (1934)  f( | &;0) = fsfé){{j(g ;/))fde

Vi ¥n) < (0, ay,...,a0) aj=yi—0

exact (conditional) distribution of maximum likelihood
estimator given by renormalized likelihood function

p* approximation:

p*(0] a0) = c(9,)lj(0)|"/? exp{(6; 0, 2) — £(4; 9, a)}
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A simpler approach

avoid

(Y17 LR ,Yn) — (éag)
define a derivative

A0 = (l8:1°) = s H)
y=y°

a directional derivative on the sample space
along with £(6; y°) the observed log-likelihood function

can be extended to derivative of mean likelihood — usable
in wider context Fraser/R Bka 2009
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Tangent exponential model

A continuous model f(y; #) on R" can be approximated by
an exponential family model on RY:

frem(s: 0)ds = exp{(0)'s + (°(0) } h(s)ds (1)

s is a score variable on RY s(y) = —£,(8%y)
0(0) = ¢(0; y°) is the observed log-likelihood function
©(0) = p(6; y°) is the directional derivative ¢.(6; y°)
(1) approximates original model to O(n~")

gives approximation to the p-value for testing 0

e p-value is accurate to O(n=3/2)
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Example: microscopic fluorescence
“tracking of microscopic fluorescent particles attached to
biological specimens” Hughes et al., AOAS, 2010

“CCD (charge-coupled device) camera attached to a
microscope used to observe the specimens repeatedly”
“we introduce an improved technique for analyzing such
images over time”

Model for counts:

Xi — X;)2 + RVAY:
Zj ~ N(fi, f+), fi~B+>_ Aexp (_( i = X) 82(y, ¥)) )
j

f; developed from a model for photon emission; Normal
approximation to Poisson; ¢ catches the instrument error
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... microscopic fluorescence

e “Our method, which applies maximum likelihood principles,
improves the fit to the data, derives accurate standard
errors from the data with minimal computation, and uses
model-selection criteria to “count” the fluorophores in an
image”

« “likelihood ratio tests are used to select the final model”

e potential for improved inference using likelihood methods?
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Yi ~ N(pj, i + 1),

approximate pivot r* constructed from £(6; y°), »(6; y°)
should follow a N(0, 1) distribution — simulations

Sample Quantiles

Higher order approximation

O00000e

... a simpler model

Normal Q-Q Plot

pi = exp(Bo + B1X;)

o0

18/30



Harder problems
@000

More realistic models

for example for analytic inferences for survey data
stochastic processes in space or space-time

extremes in several dimensions

frailty models in survival data

longitudinal data

family-based genetic data and other forms of clustering
estimation of recombination rates from SNP data
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Example: Gaussian random field

e scalar output y at p—dimensional input x = (xy,..., Xp)
[ ]
y(x) = o(x)"B+ Z(x), Z(x) Gaussian process on RP

[ ]

p
Cov{Z(x1), Z(x2)} = o® [ [ R(Ix1i — Xail: 0)

i=1

[ ]

R(Ix1i — X2il) = exp{—ilx1i — X2i[*}
e anisotropic covariance matrix for inputs on different scales

application to computer experiments  Ximing Xu,U Toronto;
Derek Bingham, SFU
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... Gaussian random field
Y= W1, ¥n) = {¥(x1),...,¥(xn)}, at nlocations x; in RP
1 1
((B,0,0) = —5{nlog o®+log | R(0) |+ (y"—®B)' A~ (6)(y"-®B3)},
computation of R~1 is O(n®), n typically 100s or 1000s

solution — make the correlation matrix sparse

solution — simplify the likelihood function
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Example: spatial GLM
generalized linear geostatistical model
E{Y(x)| Z(x)} = g{¢(x)T8 + Z(x)}.x € R2 or R®

random intercept Z(x) a stationary Gaussian process
observed at n locations y(x;),i=1,...,n
joint density

f(y;0) = / ﬁf(y,- | z;;0)f(z;0)dzy ... dz,
R7 j—1

all random effects are correlated
simulation methods to evaluate integral - MCMC, etc.
simplify the likelihood function using bivariate integrals
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Composite likelihood

e an m-dimensional vector variable Y with model f(y; 6)

¢ a set of marginal or conditional events { A4, ..., Ak} with
associated “sub” log-likelihood

lk(0;y) =log f(y € Ax) + a(y)

e composite log-likelihood

K
lo(0:y) = tk(B:y) +a
k=1

¢ inference function obtained by pretending sub-models are
independent Lindsay, 1988

¢ a set of non-negative weights wy, ..., wy
o (c(0;y) = S5y wilk(6:y)
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... composite likelihood

Example: pairwise log-likelihood

m

Cpair(0) = Z Z log f2(yr, ¥s: 0)

r=1s>r

Example: Besag’s pseudo-likelihood

m
gpseudo(e) = Z log f(}/r | {YS : ¥s neighbour of }/r}; 9)

r=1

Example: Gaussian random field, o2 = 1

1 n—-1 n B
2 Z Z {Iog |Rrs| + (yr,s - d)r,SB)T":’)r,s1 (yr,s - q)r,s/B)} )

r=1 s=r+i1

Yrs = (Vr, ¥s), With 2 x 2 correlation matrix R s
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Estimation from composite likelihood
le(8) = iy tk(6:)

Uc(0) = ¢/-(9) is an unbiased estimating function
c

estimate ¢ from Ug(d.) = 0 is asymptotically normally
distributed: X
fc ~ N{6,G7'(0)}

asymptotic variance given by Godambe information

G(0) = E{—Ug(0)}Var{Uc(6)}E{-Ug(0)}
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Inference from composite likelihood

inference function ¢4(0)

“log-likelihood ratio statistic”

we(0) = 2{¢c(0c) — Lc(0)}

complicated asymptotic distribution
d
we(8) ~ Y A
i=1

)\ are eigenvalues of H='(0)G(6)

H(6) = E{=U(0)}; G(0) = H(0)J~" (O)H(0)

rescaling based on score function can restore x2
distribution for w¢ Pace, Salvan, Sartori, 2011
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Connections to inference from surveys?

descriptive parameters defined through estimating
equation >, p» Ui(6p) =0

estimating equation might be motivated by model, e.g.
superpopulation model

“model assisted inference”
estimating equation from sample 327, w;U;(d) = 0

for example, w; = 1/7; or w; = 1/(7;q;)
sandwich estimate of variance
it's all in the weights...

Wei Lin, Changbao Wu
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Guidance from composite likelihood?

in composite likelihood inference, some surprises

optimal weights may be non-computable

or even negative Lindsay, Yi, Sun
choice of sub-likelihoods needs some care

in some models including more sub-likelihood terms leads
to poorer inference

in some models including higher dimensional
sub-components leads to poorer inference Ximing Xu

both choice of weights and choice of component
likelihoods needs care
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Approximate likelihood inference in survey inference

example: empirical likelihood for nonparametric models

¢(F) = >_log pj, with constraints
pi>0,>pi=1,>py =0

for inference about 6 = E£(Y), or more generally for
parameters defined by estimating functions

Chen, Sitter, Wu: pseudo-empirical likelihood
design assisted modelling

replace > log p; by > log pjw;, and constraint by
post-stratification such as >, pix; = Xp
confidence intervals using a profile pseudo-empirical
likelihood

needs adjustment to have asymptotic x? distribution

rescaling by the design effect
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Likelihood for complex models

Approximate Bayesian Computation

“an essential tool for the analysis of complex stochastic
models” Robert et al. 2011 PNAS

generate ¢’ from the prior 7 ()
generate z from the model p(z | 0')

compare S(z) to S(y) using some distance measure
p{S(2),S(y)}; if p < ethen ¢’ is a sample from the
posterior w(0 | y)

actually from = (0 | y, z), but this is assume ~ (6 | y)

Robert et al. show that the method can be poor if “S(-) is
far from sufficient”

especially for choosing between models
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