Harder problems

Approximations to likelihoods

Likelihood inference in complex settings

Nancy Reid

with Uyen Hoang, Wei Lin, Ximing Xu

FOUNDATIONS AND FRONTIERS: A Conference Celebrating the Contributions of Mary Thompson to the Statistical Sciences October 28 & 29, 2011 University of Waterloo

Harder problems

Approximations to likelihoods

Likelihood inference for simple problems

Higher order approximation

Harder problems

Approximations to likelihoods

Harder problems

Approximations to likelihoods

Why likelihood?

- likelihood function depends on data only through sufficient statistics
- "likelihood map is sufficient" Fraser & Naderi, 2006
- provides summary statistics with known limiting distribution
- leading to approximate pivotal functions, based on normal distribution
- in some models the likelihood function gives exact inference
- "likelihood function as pivotal" Hinkley, 1980
- likelihood function + sample space derivative gives better approximate inference

Harder problems

Approximations to likelihoods

Summary statistics and approximate pivotals

- model $f(y; \theta), y \in \mathbb{R}^n, \theta \in \mathbb{R}^d$
- log-likelihood function $\ell(\theta; y) = \log f(y; \theta) + a(y)$
- score function $u(\theta) = \partial \ell(\theta; y) / \partial \theta$
- maximum likelihood estimate $\hat{\theta} = \arg \sup_{\theta} \ell(\theta; y)$
- log-likelihood ratio $w(\theta) = 2\{\ell(\hat{\theta}; y) \ell(\theta; y)\}$

Higher order approximation

Harder problems

Approximations to likelihoods

Approximate pivotals

$$\sqrt{n(\hat{\theta}-\theta)} \sim N_d\{0, j^{-1}(\hat{\theta})\}$$

 $w(\theta) = \mathbf{2}\{\ell(\hat{\theta}) - \ell(\theta)\} \sim \chi_d^2$

$$\frac{1}{\sqrt{n}}U(\theta) \sim N_d\{0, j(\hat{\theta})\}$$

$$\frac{1}{\sqrt{n}}U(\theta) \xrightarrow{\mathcal{L}} N_d\{0, \mathcal{I}(\theta)\}$$

$$j(\hat{\theta}) = -\ell''(\hat{\theta})/n$$
 $\mathcal{I}(\theta) = E\{j(\theta)\}$

Higher order approximation

Harder problems

Approximations to likelihoods

...approximate pivotals

Higher order approximation

Harder problems

Approximations to likelihoods

...approximate pivotals

Higher order approximation

Harder problems

Approximations to likelihoods

...approximate pivotals

Higher order approximation

Harder problems

Approximations to likelihoods

...approximate pivotals

log-likelihood function

θ

Higher order approximation

Harder problems

Approximations to likelihoods

...approximate pivotals

log-likelihood function

Higher order approximation

Harder problems

Approximations to likelihoods

...approximate pivotals

$$w(heta) = 2\{\ell(\hat{ heta}) - \ell(heta)\} \sim \chi_d^2$$

(a)

Higher order approximation

Harder problems

Approximations to likelihoods

Likelihood as pivotal

- Example: location model $f(y; \theta) = \prod_{i=1}^{n} f_0(y_i \theta), \quad \theta \in \mathbb{R}$
- Fisher (1934) $f(\hat{\theta} \mid a; \theta) = \frac{\exp\{\ell(\theta; y)\}}{\int \exp\{\ell(\theta; y)\} d\theta}$

$$(y_1,\ldots,y_n)\longleftrightarrow (\hat{\theta},a_1,\ldots,a_n) \qquad a_i=y_i-\hat{\theta}$$

- exact (conditional) distribution of maximum likelihood estimator given by renormalized likelihood function
- *p*^{*} approximation:

$$p^*(\hat{ heta} \mid a; heta) = c(heta, a) |j(\hat{ heta})|^{1/2} \exp\{\ell(heta; \hat{ heta}, a) - \ell(\hat{ heta}; \hat{ heta}, a)\}$$

Higher order approximation

Harder problems

Approximations to likelihoods

A simpler approach

avoid

$$(y_1,\ldots,y_n)\longleftrightarrow(\hat{\theta},\underline{a})$$

define a derivative

$$\varphi(\theta) \equiv \ell_{;V}(\theta; y^{0}) = \left. \frac{\partial}{\partial V(y)} \ell(\theta; y) \right|_{y=y^{0}}$$

- · a directional derivative on the sample space
- along with $\ell(\theta; y^0)$ the observed log-likelihood function

 can be extended to derivative of mean likelihood – usable in wider context
 Fraser/R Bka 2009

Harder problems

Approximations to likelihoods

Tangent exponential model

 A continuous model f(y; θ) on Rⁿ can be approximated by an exponential family model on R^d:

 $f_{\mathsf{TEM}}(s;\theta)ds = \exp\{\varphi(\theta)'s + \ell^0(\theta)\}h(s)ds \tag{1}$

- *s* is a score variable on \mathbb{R}^d $s(y) = -\ell_{\varphi}(\hat{\theta}^0; y)$
- $\ell^0(\theta) = \ell(\theta; y^0)$ is the observed log-likelihood function
- $\varphi(\theta) = \varphi(\theta; y^0)$ is the directional derivative $\ell_{;V}(\theta; y^0)$
- (1) approximates original model to $O(n^{-1})$
- gives approximation to the p-value for testing θ
- *p*-value is accurate to $O(n^{-3/2})$

Cauchy density and TEM approximation

у

Harder problems

Approximations to likelihoods

Example: microscopic fluorescence

- "tracking of microscopic fluorescent particles attached to biological specimens" Hughes et al., AOAS, 2010
- "CCD (charge-coupled device) camera attached to a microscope used to observe the specimens repeatedly"
- "we introduce an improved technique for analyzing such images over time"
- Model for counts:

$$Z_i \sim \mathcal{N}(f_i, f_i + \psi), \quad f_i \simeq \mathcal{B} + \sum_j \mathcal{A}_j \exp\left(-\frac{(x_i - x_j)^2 + (y_i - y_j)^2}{S^2}\right)$$

f_i developed from a model for photon emission; Normal approximation to Poisson; ψ catches the instrument error

Harder problems

Approximations to likelihoods

... microscopic fluorescence

- "Our method, which applies maximum likelihood principles, improves the fit to the data, derives accurate standard errors from the data with minimal computation, and uses model-selection criteria to "count" the fluorophores in an image"
- "likelihood ratio tests are used to select the final model"
- potential for improved inference using likelihood methods?

Harder problems

Approximations to likelihoods

... a simpler model

$$Y_i \sim N(\mu_i, \mu_i + \psi), \quad \mu_i = \exp(eta_0 + eta_1 x_i)$$

approximate pivot r^* constructed from $\ell(\theta; y^0), \varphi(\theta; y^0)$ should follow a N(0, 1) distribution – simulations

Normal Q-Q Plot

Harder problems

Approximations to likelihoods

More realistic models

- · for example for analytic inferences for survey data
- stochastic processes in space or space-time
- extremes in several dimensions
- frailty models in survival data
- longitudinal data
- family-based genetic data and other forms of clustering
- estimation of recombination rates from SNP data

• ...

Harder problems

Approximations to likelihoods

Example: Gaussian random field

- scalar output y at p-dimensional input $x = (x_1, \ldots, x_p)$
 - $y(x) = \phi(x)^T \beta + Z(x), \quad Z(x)$ Gaussian process on \mathbb{R}^p

$$Cov\{Z(x_1), Z(x_2)\} = \sigma^2 \prod_{i=1}^p R(|x_{1i} - x_{2i}|; \theta)$$

$$R(|x_{1i} - x_{2i}|) = \exp\{-\gamma_i |x_{1i} - x_{2i}|^{\alpha}\}$$

- anisotropic covariance matrix for inputs on different scales
- application to computer experiments Ximing Xu,U Toronto; Derek Bingham, SFU

Harder problems

Approximations to likelihoods

... Gaussian random field

$$\mathbf{y}^n = (y_1, \dots, y_n) = \{y(x_1), \dots, y(x_n)\}, \text{ at } n \text{ locations } x_i \text{ in } \mathbb{R}^p$$

$$\ell(\beta,\sigma,\theta) = -\frac{1}{2} \{ n \log \sigma^2 + \log |R(\theta)| + \frac{1}{\sigma^2} (\mathbf{y}^n - \mathbf{\Phi}\beta)^{\mathrm{T}} R^{-1}(\theta) (\mathbf{y}^n - \mathbf{\Phi}\beta) \},\$$

computation of R^{-1} is $O(n^3)$, *n* typically 100s or 1000s

solution - make the correlation matrix sparse

solution - simplify the likelihood function

Harder problems

Approximations to likelihoods

Example: spatial GLM

• generalized linear geostatistical model

$$\mathsf{E}\{\mathsf{Y}(x) \mid \mathsf{Z}(x)\} = g\{\phi(x)^{\mathsf{T}}eta + \mathsf{Z}(x)\}, x \in \mathbb{R}^2 ext{ or } \mathbb{R}^3$$

- random intercept Z(x) a stationary Gaussian process
- observed at *n* locations $y(x_i), i = 1, ..., n$
- joint density

$$f(\mathbf{y};\theta) = \int_{\mathbb{R}^n} \prod_{i=1}^n f(\mathbf{y}_i \mid z_i;\theta) f(\mathbf{z};\theta) dz_1 \dots dz_n$$

- all random effects are correlated
- simulation methods to evaluate integral MCMC, etc.
- simplify the likelihood function using bivariate integrals

Higher order approximation

Harder problems

Approximations to likelihoods

Composite likelihood

- an *m*-dimensional vector variable Y with model $f(y; \theta)$
- a set of marginal or conditional events {*A*₁,...,*A*_K} with associated "sub" log-likelihood

$$\ell_k(\theta; y) = \log f(y \in \mathcal{A}_k) + a(y)$$

composite log-likelihood

$$\ell_{C}(\theta; y) = \sum_{k=1}^{K} \ell_{k}(\theta; y) + a$$

- inference function obtained by pretending sub-models are independent
 Lindsay, 1988
- a set of non-negative weights w_1, \ldots, w_k

•
$$\ell_C(\theta; y) = \sum_{i=1}^K w_k \ell_k(\theta; y)$$

Higher order approximation

Harder problems

Approximations to likelihoods

... composite likelihood

• Example: pairwise log-likelihood

$$\ell_{pair}(\theta) = \sum_{r=1}^{m} \sum_{s>r} \log f_2(y_r, y_s; \theta)$$

• Example: Besag's pseudo-likelihood

$$\ell_{pseudo}(\theta) = \sum_{r=1}^{m} \log f(y_r \mid \{y_s : y_s \text{ neighbour of } y_r\}; \theta)$$

• Example: Gaussian random field, $\sigma^2 = 1$

$$-\frac{1}{2}\sum_{r=1}^{n-1}\sum_{s=r+1}^{n}\left\{\log|\boldsymbol{R}_{r,s}|+(\boldsymbol{y}_{r,s}-\boldsymbol{\Phi}_{r,s}\boldsymbol{\beta})^{\mathrm{T}}\boldsymbol{R}_{r,s}^{-1}(\boldsymbol{y}_{r,s}-\boldsymbol{\Phi}_{r,s}\boldsymbol{\beta})\right\},$$

• $\mathbf{y}_{r,s} = (y_r, y_s)$, with 2 × 2 correlation matrix $R_{r,s}$

Harder problems

Approximations to likelihoods

Estimation from composite likelihood

•
$$\ell_{C}(\theta) = \sum_{k=1}^{K} \ell_{k}(\theta; y)$$

- $U_{\mathcal{C}}(\theta) = \ell_{\mathcal{C}}'(\theta)$ is an unbiased estimating function
- estimate \(\heta_C\) from U_C(\(\heta_c\)) = 0 is asymptotically normally distributed:

$$\hat{ heta}_{C} \sim N\{ heta, G^{-1}(heta)\}$$

asymptotic variance given by Godambe information

$$G(\theta) = \mathsf{E}\{-U_{\mathcal{C}}'(\theta)\}\mathsf{Var}\{U_{\mathcal{C}}(\theta)\}\mathsf{E}\{-U_{\mathcal{C}}'(\theta)\}$$

Harder problems

Approximations to likelihoods

Inference from composite likelihood

- inference function $\ell_C(\theta)$
- "log-likelihood ratio statistic"

$$w_C(\theta) = 2\{\ell_C(\hat{\theta}_C) - \ell_C(\theta)\}$$

complicated asymptotic distribution

$$w_{C}(\theta) \sim \sum_{i=1}^{d} \lambda_{i} \chi_{1i}^{2}$$

- λ are eigenvalues of $H^{-1}(\theta)G(\theta)$
- $H(\theta) = \mathsf{E}\{-U'_{\mathcal{C}}(\theta)\}; G(\theta) = H(\theta)J^{-1}(\theta)H(\theta)$
- rescaling based on score function can restore χ^2_d distribution for w_C Pace, Salvan, Sartori, 2011

Harder problems

Approximations to likelihoods

Connections to inference from surveys?

- descriptive parameters defined through estimating equation Σ_{i∈P} U_i(θ_P) = 0
- estimating equation might be motivated by model, e.g. superpopulation model
- "model assisted inference"
- estimating equation from sample $\sum_{i=1}^{n} w_i U_i(\hat{\theta}) = 0$
- for example, $w_i = 1/\pi_i$ or $w_i = 1/(\pi_i q_i)$
- sandwich estimate of variance
- it's all in the weights...

Harder problems

Approximations to likelihoods

Guidance from composite likelihood?

- in composite likelihood inference, some surprises
- optimal weights may be non-computable
- or even negative
- choice of sub-likelihoods needs some care
- in some models including more sub-likelihood terms leads to poorer inference
- in some models including higher dimensional sub-components leads to poorer inference Ximing Xu
- both choice of weights and choice of component likelihoods needs care

Lindsay, Yi, Sun

Approximations to likelihoods

Approximate likelihood inference in survey inference

- example: empirical likelihood for nonparametric models
- $\ell(F) = \sum \log p_i$, with constraints $p_i > 0$, $\sum p_i = 1$, $\sum p_i y_i = \theta$
- for inference about θ = E_F(Y), or more generally for parameters defined by estimating functions
- Chen, Sitter, Wu: pseudo-empirical likelihood
- design assisted modelling
- replace $\sum \log p_i$ by $\sum \log p_i w_i$, and constraint by post-stratification such as $\sum_{i=1}^{n} p_i x_i = \bar{X}_{\mathcal{P}}$
- confidence intervals using a profile pseudo-empirical likelihood
- needs adjustment to have asymptotic χ^2 distribution
- rescaling by the design effect

Harder problems

Approximations to likelihoods

Likelihood for complex models

- Approximate Bayesian Computation
- "an essential tool for the analysis of complex stochastic models"
 Robert et al. 2011 PNAS
- generate θ' from the prior $\pi(\theta)$
- generate z from the model $p(z \mid \theta')$
- compare S(z) to S(y) using some distance measure ρ{S(z), S(y)}; if ρ < ε then θ' is a sample from the posterior π(θ | y)
- actually from $\pi(\theta \mid y, z)$, but this is assume $\approx \pi(\theta \mid y)$
- Robert et al. show that the method can be poor if "S(·) is far from sufficient"
- especially for choosing between models