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Why likelihood?
• likelihood function depends on data only through sufficient

statistics
• “likelihood map is sufficient” Fraser & Naderi, 2006

• provides summary statistics with known limiting distribution
• leading to approximate pivotal functions, based on normal

distribution
• in some models the likelihood function gives exact

inference
• “likelihood function as pivotal” Hinkley, 1980

• likelihood function + sample space derivative gives better
approximate inference
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Summary statistics and approximate pivotals

• model f (y ; θ), y ∈ Rn, θ ∈ Rd

• log-likelihood function `(θ; y) = log f (y ; θ) + a(y)

• score function u(θ) = ∂`(θ; y)/∂θ

• maximum likelihood estimate θ̂ = arg supθ `(θ; y)

• log-likelihood ratio w(θ) = 2{`(θ̂; y)− `(θ; y)}
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Approximate pivotals

√
n(θ̂ − θ)

.∼ Nd{0, j−1(θ̂ )}

w(θ) = 2{`(θ̂ )− `(θ)} .∼ χ2
d

1√
n

U(θ)
.∼ Nd{0, j(θ̂ )}

1√
n

U(θ)
L−→ Nd{0, I(θ)}

j(θ̂ ) = −`′′(θ̂ )/n I(θ) = E{j(θ)}
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...approximate pivotals
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...approximate pivotals

w(θ) = 2{`(θ̂)− `(θ)} .∼ χ2
d(a)M(a)M
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Likelihood as pivotal
• Example: location model f (y ; θ) =

∏n
i=1 f0(yi − θ), θ ∈ R

• Fisher (1934) f (θ̂ | a; θ) =
exp{`(θ; y)}∫
exp{`(θ; y)}dθ

•
(y1, . . . , yn)←→ (θ̂,a1, . . . ,an) ai = yi − θ̂

• exact (conditional) distribution of maximum likelihood
estimator given by renormalized likelihood function

• p∗ approximation:

p∗(θ̂ | a; θ) = c(θ,a)|j(θ̂)|1/2 exp{`(θ; θ̂,a)− `(θ̂; θ̂,a)}
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A simpler approach
• avoid

(y1, . . . , yn)←→ (θ̂,a)

• define a derivative

ϕ(θ) ≡ `;V (θ; y0) =
∂

∂V (y)
`(θ; y)

∣∣∣∣
y=y0

• a directional derivative on the sample space
• along with `(θ; y0) the observed log-likelihood function

• can be extended to derivative of mean likelihood – usable
in wider context Fraser/R Bka 2009
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Tangent exponential model
• A continuous model f (y ; θ) on Rn can be approximated by

an exponential family model on Rd :

fTEM(s; θ)ds = exp{ϕ(θ)′s + `0(θ)}h(s)ds (1)

• s is a score variable on Rd s(y) = −`ϕ(θ̂0; y)

• `0(θ) = `(θ; y0) is the observed log-likelihood function
• ϕ(θ) = ϕ(θ; y0) is the directional derivative `;V (θ; y0)

• (1) approximates original model to O(n−1)

• gives approximation to the p-value for testing θ
• p-value is accurate to O(n−3/2)
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Example: microscopic fluorescence
• “tracking of microscopic fluorescent particles attached to

biological specimens” Hughes et al., AOAS, 2010

• “CCD (charge-coupled device) camera attached to a
microscope used to observe the specimens repeatedly”

• “we introduce an improved technique for analyzing such
images over time”

• Model for counts:

Zi ∼ N(fi , fi+ψ), fi ' B+
∑

j

Aj exp

(
−

(xi − xj)
2 + (yi − yj)

2

S2

)

• fi developed from a model for photon emission; Normal
approximation to Poisson; ψ catches the instrument error
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... microscopic fluorescence
• “Our method, which applies maximum likelihood principles,

improves the fit to the data, derives accurate standard
errors from the data with minimal computation, and uses
model-selection criteria to “count” the fluorophores in an
image”

• “likelihood ratio tests are used to select the final model”
• potential for improved inference using likelihood methods?

17 / 30



Likelihood inference for simple problems Higher order approximation Harder problems Approximations to likelihoods

... a simpler model

Yi ∼ N(µi , µi + ψ), µi = exp(β0 + β1xi)

approximate pivot r∗ constructed from `(θ; y0), ϕ(θ; y0)

should follow a N(0,1) distribution – simulations
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More realistic models
• for example for analytic inferences for survey data
• stochastic processes in space or space-time
• extremes in several dimensions
• frailty models in survival data
• longitudinal data
• family-based genetic data and other forms of clustering
• estimation of recombination rates from SNP data
• ...
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Example: Gaussian random field
• scalar output y at p−dimensional input x = (x1, . . . , xp)

•

y(x) = φ(x)Tβ + Z (x), Z (x) Gaussian process on Rp

•

Cov{Z (x1),Z (x2)} = σ2
p∏

i=1

R(|x1i − x2i |; θ)

•
R(|x1i − x2i |) = exp{−γi |x1i − x2i |α}

• anisotropic covariance matrix for inputs on different scales
• application to computer experiments Ximing Xu,U Toronto;

Derek Bingham, SFU
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... Gaussian random field
yn = (y1, . . . , yn) = {y(x1), . . . , y(xn)}, at n locations xi in Rp

`(β, σ, θ) = −1
2
{n logσ2+log |R(θ)|+ 1

σ2 (yn−Φβ)TR−1(θ)(yn−Φβ)},

computation of R−1 is O(n3), n typically 100s or 1000s

solution – make the correlation matrix sparse

solution – simplify the likelihood function
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Example: spatial GLM
• generalized linear geostatistical model

E{Y (x) | Z (x)} = g{φ(x)Tβ + Z (x)}, x ∈ R2 or R3

• random intercept Z (x) a stationary Gaussian process
• observed at n locations y(xi), i = 1, . . . ,n
• joint density

f (y ; θ) =

∫
Rn

n∏
i=1

f (yi | zi ; θ)f (z; θ)dz1 . . . dzn

• all random effects are correlated
• simulation methods to evaluate integral – MCMC, etc.
• simplify the likelihood function using bivariate integrals
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Composite likelihood
• an m-dimensional vector variable Y with model f (y ; θ)

• a set of marginal or conditional events {A1, . . . ,AK} with
associated “sub” log-likelihood

`k (θ; y) = log f (y ∈ Ak ) + a(y)

• composite log-likelihood

`C(θ; y) =
K∑

k=1

`k (θ; y) + a

• inference function obtained by pretending sub-models are
independent Lindsay, 1988

• a set of non-negative weights w1, . . . ,wk

• `C(θ; y) =
∑K

i=1 wk`k (θ; y)
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... composite likelihood
• Example: pairwise log-likelihood

`pair (θ) =
m∑

r=1

∑
s>r

log f2(yr , ys; θ)

• Example: Besag’s pseudo-likelihood

`pseudo(θ) =
m∑

r=1

log f (yr | {ys : ys neighbour of yr}; θ)

• Example: Gaussian random field, σ2 = 1

−1
2

n−1∑
r=1

n∑
s=r+1

{
log |Rr ,s|+ (yr ,s −Φr ,sβ)TR−1

r ,s (yr ,s −Φr ,sβ)
}
,

• yr ,s = (yr , ys), with 2× 2 correlation matrix Rr ,s
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Estimation from composite likelihood
• `C(θ) =

∑K
k=1 `k (θ; y)

• UC(θ) = `′C(θ) is an unbiased estimating function

• estimate θ̂C from UC(θ̂c) = 0 is asymptotically normally
distributed:

θ̂C
.∼ N{θ,G−1(θ)}

• asymptotic variance given by Godambe information

G(θ) = E{−U ′C(θ)}Var{UC(θ)}E{−U ′C(θ)}

25 / 30



Likelihood inference for simple problems Higher order approximation Harder problems Approximations to likelihoods

Inference from composite likelihood
• inference function `C(θ)

• “log-likelihood ratio statistic”

wC(θ) = 2{`C(θ̂C)− `C(θ)}

• complicated asymptotic distribution

wC(θ)
.∼

d∑
i=1

λiχ
2
1i

• λ are eigenvalues of H−1(θ)G(θ)

• H(θ) = E{−U ′C(θ)}; G(θ) = H(θ)J−1(θ)H(θ)

• rescaling based on score function can restore χ2
d

distribution for wC Pace, Salvan, Sartori, 2011
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Connections to inference from surveys?
• descriptive parameters defined through estimating

equation
∑

i∈P Ui(θP) = 0

• estimating equation might be motivated by model, e.g.
superpopulation model

• “model assisted inference”
• estimating equation from sample

∑n
i=1 wiUi(θ̂) = 0

• for example, wi = 1/πi or wi = 1/(πiqi)

• sandwich estimate of variance

• it’s all in the weights...

Wei Lin, Changbao Wu
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Guidance from composite likelihood?
• in composite likelihood inference, some surprises
• optimal weights may be non-computable
• or even negative Lindsay, Yi, Sun

• choice of sub-likelihoods needs some care
• in some models including more sub-likelihood terms leads

to poorer inference
• in some models including higher dimensional

sub-components leads to poorer inference Ximing Xu
• both choice of weights and choice of component

likelihoods needs care
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Approximate likelihood inference in survey inference
• example: empirical likelihood for nonparametric models

• `(F ) =
∑

log pi , with constraints
pi > 0,

∑
pi = 1,

∑
piyi = θ

• for inference about θ = EF (Y ), or more generally for
parameters defined by estimating functions

• Chen, Sitter, Wu: pseudo-empirical likelihood
• design assisted modelling
• replace

∑
log pi by

∑
log piwi , and constraint by

post-stratification such as
∑n

i=1 pixi = X̄P
• confidence intervals using a profile pseudo-empirical

likelihood
• needs adjustment to have asymptotic χ2 distribution
• rescaling by the design effect
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Likelihood for complex models
• Approximate Bayesian Computation
• “an essential tool for the analysis of complex stochastic

models” Robert et al. 2011 PNAS

• generate θ′ from the prior π(θ)

• generate z from the model p(z | θ′)
• compare S(z) to S(y) using some distance measure
ρ{S(z),S(y)}; if ρ < ε then θ′ is a sample from the
posterior π(θ | y)

• actually from π(θ | y , z), but this is assume ≈ π(θ | y)

• Robert et al. show that the method can be poor if “S(·) is
far from sufficient”

• especially for choosing between models
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