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Big Data

= Big Machines

= Lots of Computing

= Complex Architectures

= Computer Science
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Small data

= equations and 

formulas

= mathematical 

modelling

= a little computing

= Statistical Science
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Big Data

• Interesting

• Detailed

• Informative

• Fun
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Small Data
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So yesterday
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Small Data
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Canadian Institute for Statistical Sciences

Pacific Institute 

for 

Mathematical 

Sciences

Centre de Recherches Mathématiques

Fields Institute 

for Resesarch

in the 

Mathematical 

Sciences
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Workshops

• Opening Conference and Bootcamp

• Statistical Machine Learning

• Optimization and Matrix Methods

• Visualization: Strategies and Principles

• Big Data in Health Policy

• Big Data for Social Policy
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https://www.fields.utoronto.ca/video-archive


Opening Conference and Bootcamp

Introduction to topics at following workshops

One day on each topic

Many speakers started by trying to define big data

“I shall not today attempt further to define the kinds of 

material I understand to be embraced within that 

shorthand description, and perhaps I could never 

succeed in intelligibly doing so. 

But I know it when I see it … ”

Justice Potter Stewart;  Jacobellis v. Ohio 22 June 1964

Robert Bell, Google, Plenary Opening Lecture
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Some highlights

12Queen's University 31 March 2017



Some highlights
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• natural gradient ascent

• uses Fisher information as metric tensor

Girolami and Calderhead (2011); Amari (1987); Rao (1945)

• Gaussian graphical model approximation to force 

sparse inverse

Grosse and Salakhutdinov (2016) 32nd Internat. Conf. on Machine Learning
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• if just one binary top node, model for 

is a logistic regression

• with several binary top nodes, model for

is also a logistic regression, with odds ratio depending      

only on

• deep learning has ~10 layers, with millions of units 

in each layer 

• estimating parameters is an optimization problem
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Leung et al Bioinformatics 2014  

Brendan Frey, Infinite Genomes Project

FieldsLive January 27 2015



Some highlights
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Some highlights
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• lasso penalty           

• is convex relaxation of 

• many interesting penalties are non-convex 

• optimization routines may not find global optimum
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• statistical error               neighbourhood of true value

• approximation error                    iterating over t

Wainwright FieldsLive Jan 16 2015

Loh and Wainwright JMLR 2015
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Some highlights

22Queen's University 31 March 2017



Some highlights
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innovis.cpsc.ucalgary.ca

http://innovis.cpsc.ucalgary.ca/Research/EdgeMaps
http://innovis.cpsc.ucalgary.ca


Visualization

• statistical graphics

– data representation

– data exploration

– filtering, sampling aggregation

• information visualization

• scientific visualization

• cognitive science and design
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http://innovis.cpsc.ucalgary.ca/Research/EdgeMaps


Visualization
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KPMG Data Observatory, IC
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https://www.imperial.ac.uk/data-science/kpmg-data-observatory-/visualisation-case-studies/


Visualization
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KPMG Data Observatory, IC
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https://www.imperial.ac.uk/data-science/kpmg-data-observatory-/visualisation-case-studies/


Visualization
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fivethirtyeight.com
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http://projects.fivethirtyeight.com/2016-election-forecast/


Visualization
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fivethirtyeight.com
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http://projects.fivethirtyeight.com/2016-election-forecast/


Visualization
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fivethirtyeight.com
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https://projects.fivethirtyeight.com/trump-approval-ratings/


Visualization
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fivethirtyeight.com
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guns

https://projects.fivethirtyeight.com/trump-approval-ratings/


Some highlights
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Some highlights
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Health Policy      Administrative Databases
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Institute for Clinical and Evaluative Sciences
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Health Policy      Administrative Databases
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Institute for Clinical and Evaluative Sciences
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Thérèse Stukel, ICES
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Some highlights
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Some highlights

37Queen's University 31 March 2017

http://www.sciencemag.org/content/347/6221.cover-expansion
http://repository.cmu.edu/jpc/all_issues.html


Thérèse Stukel, ICES
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Privacy

• “Big Data and Innovation, Setting the Record Straight: 

De-identification Does Work”
Privacy Commissioner of Ontario, July 2014

• “No silver bullet: De-identification still doesn’t work”
Narayan & Felten, July 2014

• Statistical Disclosure Limitation

• Differential Privacy

• Multi-party Communication
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https://www.ipc.on.ca/wp-content/uploads/Resources/pbd-de-identification_ITIF.pdf
https://iapp.org/resources/article/no-silver-bullet-de-identification-still-doesnt-work/
http://repository.cmu.edu/jpc/all_issues.html


Some highlights
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What did we learn?

• Statistical models for big data are complex, 

high-dimensional
– inference is well-studied, but difficult

• Computational challenges include size and speed
– ideas of statistical inference get lost in the machine

• Data owners understand 2., but not 1.

• Data modellers understand 1., but not 2.

• Data science may be the best way to combine these
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That was yesterday

• Data science programs “springing up like mushrooms 

after rain”

• Berkeley, Hopkins, CMU, Washington, UBC, Toronto, …
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http://news.harvard.edu/gazette/story/2017/03/harvard-launches-sweeping-data-science-initiative/


What is data science?

• a course?

• a set of courses?

• a job?

• a technology?

• a new field of research? 

• a collaboration?
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Data Science Program(s)

• mathematical reasoning

• statistical theory

• statistical and machine learning methods

• programming and software development

• algorithms and data structure

• communication results and limitations
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http://arxiv.org/abs/1609.00037v1
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http://arxiv.org/abs/1609.00037v1


… Good Enough

• Data Management – from raw to ‘analysable’

knitr

• Software – programming

tidyr

• Collaboration

dplyr

• Project Organization

ggplot2

• Keeping Track

ggvis

• Writing Github

46Queen's University 31 March 2017



Data Science Research

• data collection and data quality

• large N, small p  
– computational strategies, e.g. Spark, Hadoop

– divide and conquer

• small n, large p 
– inferential and computational strategies

– dimension reduction

– post-selection inference

– inference for extremes

• ‘new’ types of data: networks, graphs, text, images, …
– “alternative sources”
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https://www.nsf.gov/pubs/2016/nsf16615/nsf16615.htm


… Data Science Research

• collaboration and communication

• data wrangling, database development, record linkage, 

privacy

• replicability, reproducibility, new workflows

• visualization

• outside the ivory tower -- industry, government, 

media, public
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Tripods (Transdisc Research in Princ…)

Fundamental research areas that may be a part of the 
focus of a transdisciplinary collaboration under this 
solicitation include, but are not limited to:

• Combinatorial inference on complex structures;

• Tradeoffs between computational costs and statistical 
efficiency;

• Randomized numerical linear algebra;

• Representation theory and non-commutative harmonic 
analysis;

• Topological data analysis (TDA) and homological 
algebra; and

• Multiple areas in machine learning including deep 
learning.
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https://www.nsf.gov/pubs/2016/nsf16615/nsf16615.htm


Published Feb 2016

I. General Perspectives

I. Data-Centric, Exploratory Methods

I. Efficient Algorithms

II. Graph Approaches

III. Model Fitting and Regularization

IV. Ensemble Methods

V. Causal Inference

VI. Targeted Learning
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The push back
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How big data threatens democracy and increases inequality

“if the assessment never asks about race, 

how could the algorithm throw up racially 

biased results?”  

“Credit scores are used by nearly 

half of American employers to 

screen potential employees”
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The push back
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“Big data is neither easier nor faster nor cheaper”

“Building a database doesn’t create its own uses”

My impression was that there is a sense in which ML is to statistics
what robotization is to society: a job threat demanding a 
compelling reexamination of what is left for human statisticians to do,

https://beatricecherrier.wordpress.com/2017/03/22/are-the-promises-of-big-data-in-social-sciences-being-betrayed/


Privacy
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Privacy
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March 27

March 29

https://www.theguardian.com/technology/2017/mar/27/us-facial-recognition-database-fbi-drivers-licenses-passports
https://www.theguardian.com/public-leaders-network/2017/mar/21/government-sharing-private-data-livechat?platform=hootsuite


The push back
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The push back

56

“Big data” has arrived, but big insights have not
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http://onlinelibrary.wiley.com/store/10.1111/j.1740-9713.2014.00778.x/asset/sign778.pdf?v=1&t=i4oxmb4m&s=417f3c38b375fdf793142302b2c681fe2076d478


“A range of other problems”
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Michael Jordan, UC Berkeley

“while I do think of neural networks 
as one important tool in the toolbox, 
I find myself surprisingly rarely 
going to that tool when I’m 
consulting out in industry. 

I find that industry people are often 
looking to solve a range of other 
problems, often not involving 
“pattern recognition” problems”

accurate answers quickly; meaningful error bars; merge various 

data sources; visualize and present conclusions; diagnostics; non-

stationarity; targetted experiments within databases
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Caution can be a good thing
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“Digital Hippocratic Oath”
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Caution can be a good thing
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“…from data we will get the cure for cancer as well as 

better hospitals; 

schools that adapt to children’s needs making them 

happier and smarter;

better policing and safer homes; 

and of course jobs.”

Guardian 2 July 2016
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Big Data 2013
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Gartner Hype Cycle

http://www.gartner.com/newsroom/id/2575515
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Big Data 2014
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2015

Machine Learning
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Gartner Hype Cycle 2016

Smart Data

Discovery
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Thank You! 
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