Accurate directional inference for vector parameters

Nancy Reid

June 23, 2016

with Don Fraser, Nicola Sartori, Anthony Davison

Parametric models and likelihood

- model $f(y; \theta)$,
- data $y = (y_1, \ldots, y_n)$
- log-likelihood function
- parameter of interest
- likelihood inference $\dot{\sim} \chi^2_d$

 $\begin{array}{ll} \theta \in \mathbb{R}^{p} \\ \text{independent observations} & p < n \\ \ell(\theta; y) = \log f(y; \theta) & +a(y) \\ \theta = (\psi, \lambda), \quad \psi \in \mathbb{R}^{d} \end{array}$

$$w(\psi) = 2\{\ell(\hat{\psi}, \hat{\lambda}) - \ell(\psi, \hat{\lambda}_{\psi})\}$$

psi1

Likelihood Contours

$$w_B(\psi) = \frac{w(\psi)}{1 + B(\psi)} \stackrel{\sim}{\sim} \chi_d^2 \quad O_p(n^{-2})$$
$$B(\psi) = \mathbb{E}\{w(\psi)\}/d$$
$$w^*(\psi) = w(\psi) \left\{ 1 - \frac{\log \gamma(\psi)}{w(\psi)} \right\}$$

Skovgaard, 2001

۲ - ۲ - ۹

psi2

Introduction

Example: 2×3 contingency table

activity amongst psychiatric patients

Everitt, 1992

	Affective disorders	Schizophrenics	Neurotics
Retarded	12	13	5
Not retarded	18	17	25

- model: log-linear $y \sim \text{Poisson}$, $\log\{E(y)\} = X\theta$, $\theta \in \mathbb{R}^6$
- log-likelihood $\ell(\theta; y) = \theta^{\mathrm{T}} X^{\mathrm{T}} y 1^{\mathrm{T}} e^{X\theta} = \theta^{\mathrm{T}} u c(\theta)$
- $heta = (\psi, \lambda)$ $\psi \in \mathbb{R}^2, \lambda \in \mathbb{R}^4$
- (ψ_1, ψ_2) interaction parameters
- $H_0: \psi = \psi_0 = (0,0)$ independence
- log-likelihood $\ell(\psi, \lambda; y) = \psi^{\mathrm{T}} u_1 + \lambda^{\mathrm{T}} u_2 c(\psi, \lambda)$

Likelihood Contours

 $w(\psi_0) \sim \chi_2^2$ p-value 0.047 $w^*(\psi_0)$ 0.048

Linear exponential families

- model $f(y;\theta) = \exp\{\varphi(\theta)^{\mathrm{T}}u(y) c\{\varphi(\theta)\} d(y)\}$ y_1, \ldots, y_n i.i.d
- sufficient statistic $f(u; \theta) = \int_{\{y:u(y)=u\}} f(y; \theta) dy = \exp\{\varphi(\theta)^T u nc\{\varphi(\theta)\} \tilde{d}(u)\}$
- reduce dimension from n to p by marginalization
- linear parameter of interest $\varphi(\theta) = \theta = (\psi, \lambda)$
- model $f(u_1, u_2; \psi, \lambda) = \exp\{\psi^{\mathrm{T}}u_1 + \lambda^{\mathrm{T}}u_2 nc(\psi, \lambda) \tilde{d}(u)\}$
- conditional density $f(u_1 \mid u_2; \psi) = \exp\{\psi^{T}u_1 - n\tilde{c}_2(\psi) - \tilde{d}_2(u_1)\}$

roduce dimension from n to d by conditioning

... conditional density

$$\exp\{\psi^{\mathrm{T}}u_1 + \lambda^{\mathrm{T}}u_2 - nc(\theta) - \tilde{d}(u)\}$$

•
$$f(u_1 \mid u_2; \psi) = \exp\{\psi^{\mathrm{T}} u_1 - n\tilde{c}_2(\psi) - \tilde{d}_2(u_1)\}$$

•
$$f(u_1 \mid u_2; \psi) = \frac{f(u_1, u_2; \psi, \lambda)}{f(u_2; \psi, \lambda)} \propto f(u; \psi, \lambda)$$
 with u_2 held fixed

•
$$u_2$$
 held fixed $\iff \hat{\lambda}_\psi$ held fixed $\hat{ heta}_\psi = (\psi, \hat{\lambda}_\psi)$

• centering:
$$s = u - u^0$$
 $s^0 = s(y^0) = 0$

• saddlepoint approximation:

$$f(s_1 \mid s_2; \psi) \doteq c \exp[\ell(\hat{\theta}^0_{\psi}; s) - \ell\{\hat{\theta}(s); s\}] |j\{\hat{\theta}(s); s\}|^{-1/2}, \quad s \in L^0_{\psi}$$

• plane
$$L^0_\psi = \{s \in \mathbb{R}^p : s_2 = 0\} = \{s \in \mathbb{R}^p : \hat{\lambda}_\psi = \hat{\lambda}^0_\psi\}$$

• tilted log-likelihood: $\ell(\theta; s) = \psi^{\mathrm{T}} s_1 + \lambda^{\mathrm{T}} s_2 + \ell(\theta; y^0)$ • $\hat{\theta}(s) : \partial \ell(\theta; s) / \partial \theta = 0$

Introduction	Linear exponential families	Directional testing	More general models	Conclusion	
cond	itional density				

$$f(s_1 \mid s_2; \psi) \doteq c \exp[\ell(\hat{\theta}^0_{\psi}; s) - \ell\{\hat{\theta}(s); s\}] |j\{\hat{\theta}(s); s\}|^{-1/2}, \quad s \in L^0_{\psi}$$

	Affective disorders	Schizophrenics	Neurotics
Retarded	12	13	5
Not retarded	18	17	25

$$s_1 \in \mathbb{R}^2$$
, $s_2 \in \mathbb{R}^4$

full model Poisson

 L_{ψ}^{0} : all 2 × 3 tables with the same row and column totals

Directional tests

- measure the directed departure from H_0 in L^0_{ψ} $s_2 = 0$ on L^0_{ψ}
- s_{ψ} : expected value of s_1 , under H_0
- s^0 : observed value of $s_1 = 0$ from centering
- L_{ψ}^* : line through these two points

• $L_{\psi}^{*} = ts^{0} + (1 - t)(s_{\psi} - s^{0}), \quad t \in \mathbb{R}$ Relative log likelihood S(t) $q_{\psi}^{\mathbb{R}} = \int_{Q_{\psi}} \int_{Q_{\psi}$

Nancy Reid

 \bigcirc null hypothesis of independence t = 0X observed value of s t = 1

 $p\text{-value compares probability from}\times$ to ∞ to that from \bigcirc to ∞ along the line in the sample space \qquad curve in the parameter space

like a 2-sided *p*-value Pr (response > observed | response > 0)

... directional *p*-value

• *p*-value =
$$\frac{\int_{1}^{\infty} t^{d-1} f\{s(t); \psi\} dt}{\int_{0}^{\infty} t^{d-1} f\{s(t); \psi\} dt}$$

s(t) along the line L_{ψ}^{*}

t^{d-1} from change to polar coordinates ||s||, conditional on s/||s||
Simplifications:

• 1:
$$L^*_\psi \subset L^0_\psi \subset \mathbb{R}^p$$

- 2: ratio of two integrals drop any terms that don't depend on *t*
- 3: saddlepoint approximation

 $f(\boldsymbol{s};\boldsymbol{\psi}) \doteq c \exp[\ell(\hat{\theta}^{0}_{\psi};\boldsymbol{s}) - \ell\{\hat{\theta}(\boldsymbol{s});\boldsymbol{s}\}] |j\{\hat{\theta}(\boldsymbol{s});\boldsymbol{s}\}|^{-1/2}, \quad \boldsymbol{s} \in L^{0}_{\psi}$

Nancy Reid

$\dots 2 \times 3$ table

	Linear exponential families	Directional testing	More general models	Conclusion
2 × 3	table	sir	nulations	

Nominal	0.010	0.025	0.050	0.100	0.250	0.500
LRT	0.011	0.028	0.055	0.107	0.260	0.510
Directional	0.010	0.024	0.050	0.100	0.250	0.501
Skovgaard, 2001	0.010	0.025	0.050	0.101	0.251	0.501

Nominal	0.750	0.900	0.950	0.975	0.990
LRT	0.757	0.905	0.952	0.974	0.992
Directional	0.752	0.902	0.950	0.973	0.992
Skovgaard, 2001	0.752	0.900	0.950	0.973	0.991

Conclusion

Example: comparison of normal variances

Likelihood ratio statistic	0.0042
Directional	0.0389
Skovgaard, 2001	0.0622
Bartlett's test	0.0136

F-test

3 groups, 10 observations per group

3 groups, 5 observations per group

1000 groups, 5 observations per group

Example: covariance selection

• model
$$y_i \sim N_q(\mu, \Lambda^{-1})$$

inverse covariance matrix

• linear exponential family

$$\ell(\theta; y) = \frac{n}{2} \log |\Lambda| - \frac{1}{2} \operatorname{tr}(\Lambda y^{\mathrm{T}} y) + \mathbf{1}^{\mathrm{T}} y \xi - \frac{n}{2} \xi^{\mathrm{T}} \Lambda \xi \qquad \mathbf{s}_{1}, \mathbf{s}_{2}$$

• $\theta = (\xi, \Lambda) = (\Lambda \mu, \Lambda)$

• H_0 : some off-diagonal elements of Λ are 0 $\psi_1 = \cdots = \psi_d = 0$

conditional independence

need constrained m.l.e: use fitConGraph in ggm

•
$$\hat{\Lambda}^{-1}(t) = t\hat{\Lambda}^{-1} + (1-t)\hat{\Lambda}_0^{-1}$$
 m.l.e. along the line

•
$$f\{s(t);\psi\} \propto |t\hat{\Lambda}^{-1} + (1-t)\hat{\Lambda}_0^{-1}|^{(n-q-2)/2}$$

... covariance selection

simulations

Nominal	0.010	0.025	0.050	0.100	0.250	0.500
LRT	0.055	0.105	0.170	0.270	0.487	0.730
Directional	0.011	0.026	0.050	0.101	0.248	0.498
Skovgaard, 2001	0.007	0.018	0.036	0.074	0.196	0.422

Nominal	0.750	0.900	0.950	0.975	0.990
LRT	0.895	0.967	0.985	0.994	0.998
Directional	0.749	0.899	0.949	0.974	0.990
Skovgaard, 2001	0.678	0.852	0.919	0.955	0.980

Covariance matrix 11×11 ; dimension of $\psi = 45$

first order Markov dependence

Nonlinear exponential families

•
$$f(y;\theta) = \exp\{\varphi(\theta)^{\mathrm{T}}u(y) - c(\varphi) - d(y)\}$$

•
$$f(u; \theta) = \exp\{\varphi(\theta)^{\mathrm{T}}u - nc(\varphi) - \tilde{d}(u)\}$$
 $n \downarrow p$

- centering: $s = u u^0$, tilted log-likelihood $\ell(\theta; s) = \varphi(\theta)^T s + \ell(\theta; y^0)$
- parameter of interest: $\psi = \psi(\theta) = \psi(\theta(\varphi))$
- no reduction in dimension by conditioning
- can eliminate nuisance parameter by Laplace integration

• $\theta = (\psi, \lambda)$; $\varphi = \varphi(\theta)$ is the canonical parameter of the TEM

- with ψ fixed by the hypothesis, we can integrate out the nuisance parameter by Laplace approximation
- define the same plane in the score space L_{ψ}^{0} , where $\hat{\varphi}_{\psi}$ is fixed at its observed value

$$\begin{split} f(s;\psi) &= c \exp\{\ell(\hat{\varphi}^0_{\psi};s) - \ell(\hat{\varphi}(s);s)\}|j_{\varphi\varphi}(\hat{\varphi}(s);s)|^{-1/2}|j_{(\lambda\lambda)}(\hat{\varphi}^0_{\psi};s)|^2 \\ &\quad s \in L^0_{\psi} \end{split}$$

$$p\text{-value} = \frac{\int_1^\infty t^{d-1} f\{s(t); \psi\} dt}{\int_0^\infty t^{d-1} f\{s(t); \psi\} dt} \qquad s(t) \text{ along the line } L_{\psi}^*$$

Example: marginal independence

- $y_i \sim N_q(\mu, \Sigma),$ H_0 : some entries of Σ are 0
- estimate Σ under H_0 using fitCovGraph

•
$$\ell(\Sigma) = \frac{n-1}{2} [\log |\varphi(\Sigma)| - \frac{n-1}{2} tr \{\varphi(\Sigma)S\}], \quad \varphi(\Sigma) = \Sigma^{-1}$$

 $S = \text{sample covariance}$

•
$$f\{s(t);\psi\} \propto |t\hat{\Sigma} + (1-t)\hat{\Sigma}_0|^{(n-q-2)/2}|j_{(\lambda\lambda)}\{\hat{\Sigma}_0;s(t)\}|^{1/2}$$

• $j_{(\lambda\lambda)}$ needs $\partial \ell(\Sigma) / \partial(\sigma_{jk})$ for the non-zero elements

•
$$j_{\lambda_j\lambda_k}\{\hat{\Sigma}_0; s(t)\} =$$

 $\frac{n-1}{2}\left(\operatorname{tr}(A_{kj} + t\left[\operatorname{tr}\{(A_{kj} + A_{jk})(\hat{\Sigma}_0^{-1}\hat{\Sigma} - I_q)\}\right]\right)$
• $A_{kj} = \Sigma_0^{-1}(\partial \Sigma / \partial \lambda_k) \Sigma_0^{-1}(\partial \Sigma / \partial \lambda_j)$

	on Linear exp families		Directio	nal testing	More	general mod	lels	Conclusion
İ	ndependence	•	si	mulation	s; <i>n</i> = 60	0; 600, <i>d</i>	= 100	0
	Nominal	0.010	0.025	0.050	0.100	0.250	0.500	0
-	LRT	1.00	1.00	1.00	1.00	1.00	1.00)
	Directional	0.007	0.024	0.049	0.097	0.250	0.49	7
	Skovgaard, 2001	0.000	0.000	0.000	0.001	0.006	0.026	6
	Nominal	0.750	0.900	0.950	0.975	0.990		
-	LRT	1.00	1.00	1.00	1.00	1.00		
	Directional	0.749	0.904	0.951	0.975	0.990		
	Skovgaard, 2001	0.099	0.225	0.333	0.440	0.570		
	Nominal	0.010	0.025	0.050	0.100	0.250	0.500	0
-	LRT	0.065	0.122	0.199	0.311	0.538	0.78	6
	Directional	0.010	0.024	0.049	0.098	0.251	0.49	6
	Skovgaard, 2001	0.003	0.010	0.022	0.050	0.150	0.352	2
_	Nominal	0.750	0.900	0.950	0.975	0.990		
	LRT	0.927	0.979	0.991	0.997	0.999		
	Directional	0.751	0.898	0.950	0.975	0.989		
	Skovgaard, 2001	0.622	0.819	0.894	0.943	0.974		

Tangent exponential model $n \downarrow p$ (dimension of y to dimension of θ)

Every model f(y; θ) on ℝⁿ can be approximated by an exponential family model:

 $f_{TEM}(s; \theta) = \exp\{\varphi(\theta)^{\mathrm{T}}s + \ell^{0}(\theta)\}h(s)$

- s is a score variable on \mathbb{R}^{p} $s(y) = -\ell_{\varphi}(\hat{\theta}^{0}; y)$
- $\ell^0(\theta) = \ell(\theta; y^0)$ is the observed log-likelihood function
- $\varphi(\theta) = \varphi(\theta; y^0)$ is the canonical parameter $\in \mathbb{R}^p$

to be described

- matches log-likelihood function at y^0 , and its first derivative on the sample space, at y^0 by construction
- implements conditioning on an approximate ancillary statistic contrast with exp fam

Aside: canonical parameter $\varphi(\theta)$

- if $f(y; \theta)$ is an exponential family, φ is sitting in the model
- if not find a pivotal quantity $z_i = z_i(y_i; \theta)$ with a fixed distribution

example: $(y_i - \mu)/\sigma$

• define
$$V_i = -\left(\frac{\partial z_i}{\partial y_i}\right)^{-1} \left.\frac{\partial z_i}{\partial \theta}\right|_{y=y^0,\theta=\hat{\theta}^0}$$
 a vector of length p

$$\varphi(\theta) = \varphi(\theta; y^0) = \sum_{i=1}^n \frac{\partial \ell(\theta; y^0)}{\partial y_i} V_i = \ell_{;V}(\theta; y^0)$$

Conclusion

Example: Box-Cox model for regression

•
$$y_i(\gamma) = x_i^{\mathrm{T}}\beta + \sigma z_i, \quad i = 1, \dots, n$$

•
$$y_i(\gamma) = \begin{cases} (y_i^{\gamma} - 1)/\gamma, & \gamma \neq 0 \\ \log y_i & \gamma = 0 \end{cases}$$

•
$$\varphi(\theta) = \varphi(\theta; y^0) = \sum_{i=1}^n \frac{\partial \ell(\theta; y^0)}{\partial y_i} V_i$$

۲

$$\begin{array}{lll} \displaystyle \frac{\partial \ell_i(\theta)}{\partial y_i} & = & \displaystyle -\frac{\{y_i(\gamma) - x_i^\top \beta\}}{\sigma^2} \, \frac{\partial y_i(\gamma)}{\partial y_i} + \frac{\gamma - 1}{y_i} \,, \\ \displaystyle V_i & = & \displaystyle y_i^{1 - \hat{\gamma}} \left[x_i^\top, \frac{y_i(\hat{\gamma}) - x_i^\top \hat{\beta}}{\hat{\sigma}}, \frac{y_i^{\hat{\gamma}} - \hat{\gamma} y_i^{\hat{\gamma}} \log y_i - 1}{\hat{\gamma}^2} \right] \,, \end{array}$$

row vector of length p

Linear exponential families	Directional testing	More general models	Conclusion

 3×4 factorial with 4 replications $\dim(\theta) = 14; \quad \dim(\psi) = 6; \quad H_0: \text{ no interaction}$ Box-Cox 1964

	Linear exponential families	Directional testing	More general models	Conclusion
Conclusion				

- different way to assess vector parameters
- incorporates information in the direction of departure
- easy to compute: two model fits, plus 1-d numerical integration
- accurate conditionally, by construction, and unconditionally simulations
- can be used in models of practical interest
- exponential family model not necessary easily generalized using approximate exponential family model

	Linear exponential families	Directional testing	More general models	Conclusion
conclu	sion			

	Linear exponential families	Directional testing	More general models	Conclusion
conc	lusion			

Nancy Reid

	Linear exponential families	Directional testing	More general models	Conclusion
concl	usion			
Conci	usion			

Nancy Reid

References

Fraser, D.A.S. and Massam, H. (1985). Conical tests. Stat. Hefte

Skovgaard, I.M. (1988). Saddlepoint expansions for directional test probabilities. JRSS B

Skovgaard, I.M. (2001). Likelihood asymptotics. SJS

Cheah, P.K., Fraser, D.A.S., Reid, N. (1994). Multiparameter testing in exponential models. *Biometrika*

Davison, A.C., Fraser, D.A.S., Reid, N., Sartori, N. (2014). Accurate directional inference for vector parameters in linear exponential families. *JASA*

Fraser, D.A.S., Reid, N., Sartori, N. (2016). Accurate directional inference for vector parameters. *Biometrika*, to appear.