Approximate Likelihoods

Nancy Reid
University of Toronto

August 14, 2015
Models and likelihood

- **Model** for the probability distribution of y given x
- **Density** $f(y \mid x)$ with respect to, e.g., Lebesgue measure
- **Parameters** for the density $f(y \mid x; \theta)$, $\theta = (\theta_1, \ldots, \theta_d)$
- **Data** $y = (y_1, \ldots, y_n)$ often independent

- **Likelihood function** $L(\theta; y) \propto f(y; \theta)$ (y_1, \ldots, y_n)
- **log-likelihood function** $\ell(\theta; y) = \log L(\theta; y)$

- often $\theta = (\psi, \lambda)$

- θ could have very large dimension, $d > n$

- θ could have infinite dimension in principle

$E(y \mid x) = \theta(x)$ ‘smooth’
Why likelihood?

- makes probability modelling central \[\ell(\theta; y) = \log f(y; \theta) \]
- emphasizes the inverse problem of reasoning \[y \rightarrow \theta \]
- converts a ‘prior’ probability to a posterior \[\pi(\theta) \rightarrow \pi(\theta | y) \]
- provides a conventional set of summary quantities: maximum likelihood estimator, score function, ...
- provides summary statistics with known limiting distribution
- these define approximate pivotal quantities, based on normal distribution
- basis for comparison of models, using AIC or BIC
A Generalized Probabilistic Model of Ice Load Peaks on Ship Hulls in Broken-Ice Fields

A. Suyuthia, B.J. Leiraa, K. Riskab, c

a Department of Marine Technology, NTNU, Trondheim, Norway
b Centre of Ships and Offshore Structures (CeSOS), Trondheim, Norway
c Il S. OY. Helsinki, Finland
... widely used

- **PP-A09-12**
 - Title: A Semiparametric Empirical Likelihood on the Linear Models with Covariates Parametrically Transformed
 - Authors: Zhang, Jing Hua, Xue, Liugen
 - Institution: Beijing Univ. of Tech.

- **PP-A09-17**
 - Title: Empirical Likelihood in Generalized Linear Models for Longitudinal Data with Dropout
 - Authors: Guo, Donglin, Xue, Liugen
 - Institution: Beijing Univ. of Tech.

- **PP-A09-8**
 - Title: Generalized Empirical Likelihood Inference for Longitudinal Data with Missing Response Variables and Error-Prone Covariates
 - Authors: Liu, Juanfang, Xue, Liugen
 - Institution: Beijing Univ. of Tech.

- **MS-Fr-D-48-3**
 - Title: Image Reconstruction and Interpretation in Positron Emission Tomography for Small Animals (micro-PET)
 - Authors: Garbarino, Sara
 - Institution: Department of Mathematics, Univ. of Genoa
 - Time: 14:30–15:00

- **MS-Fr-D-36-2**
 - Title: A Randomized Likelihood Method for Data Reduction in Large-scale Inverse Problems
 - Authors: De Tiffney, Ben
 - Institution: The Univ. of Texas at Austin
 - Time: 14:00–14:30
... why likelihood?

- provides a conventional set of summary quantities: maximum likelihood estimator, score function, ...
- provides summary statistics with known limiting distribution
Important summaries

- maximum likelihood estimator
 \(\hat{\theta} = \arg \sup_{\theta} \log L(\theta; y) \)
 \(= \arg \sup_{\theta} \ell(\theta; y) \)

- observed Fisher information
 \(j(\hat{\theta}) = -\left. \frac{\partial^2 \ell(\theta)}{\partial \theta^2} \right|_{\hat{\theta}} \)

- efficient score function
 \(\ell'(\theta) = \frac{\partial \ell(\theta; y)}{\partial \theta} \)
 \(\ell'(\hat{\theta}) = 0 \) assuming enough regularity

- \(\ell'(\theta; y) = \sum_{i=1}^{n} \left(\frac{\partial}{\partial \theta} \right) \log f_{Y_i}(y_i; \theta), \quad y_1, \ldots, y_n \) independent
Limit theorems

- $\ell'(\theta) j^{-1/2}(\hat{\theta}) \xrightarrow{\mathcal{L}} N(0, 1)$
- $(\hat{\theta} - \theta) j^{1/2}(\hat{\theta}) \xrightarrow{\mathcal{L}} N(0, 1)$
- $2\{\ell(\hat{\theta}) - \ell(\theta)\} \xrightarrow{\mathcal{L}} \chi^2_1$
- under the model $f(y; \theta)$ regularity conditions

- approximate pivots

$$r_e(\theta) = (\hat{\theta} - \theta) j^{1/2}(\hat{\theta})$$

$$r(\theta) = \pm \sqrt{2\{\ell(\hat{\theta}) - \ell(\theta)\}}$$
... approximate pivots

\[r_e(\theta) = (\hat{\theta} - \theta) j^{1/2}(\hat{\theta}) \]

\[r(\theta) = \pm \sqrt{2\{\ell(\hat{\theta}) - \ell(\theta)\}} \]
Complicated likelihoods

generalized linear mixed models

GLM: \[y_{ij} \mid u_i \sim \exp\{y_{ij}\eta_{ij} - b(\eta_{ij}) + c(y_{ij})\} \]

linear predictor: \[\eta_{ij} = x_{ij}^T \beta + z_{ij}^T u_i \quad j=1,\ldots,n_i; \quad i=1,\ldots,m \]

random effects: \[u_i \sim N_k(0, \Sigma) \]

log-likelihood:

\[\ell(\beta, \Sigma) = \sum_{i=1}^{m} \left(y_{i}^T x_i \beta - \frac{1}{2} \log |\Sigma| \right) + \log \int_{\mathbb{R}^k} \exp\{y_{i}^T Z_i u_i - 1_i^T b(X_i \beta + Z_i u_i) - \frac{1}{2} u_i^T \Sigma^{-1} u_i\} du_i \]

Ormerod & Wand 2012
... complicated likelihoods

multivariate extremes: example, wind speed at d locations

vector observations: $(X_{1i}, \ldots, X_{di}), \ i = 1, \ldots, n$

component-wise maxima: $Z_1, \ldots, Z_d; Z_j = \max(X_{j1}, \ldots, X_{jn})$

Z_j are transformed (centered and scaled)

joint distribution function:

$$\Pr(Z_1 \leq z_1, \ldots, Z_d \leq z_d) = \exp\{-V(z_1, \ldots, z_d)\}$$

$V(\cdot)$ can be parameterized via Gaussian process models

likelihood: need the joint derivatives of $V(\cdot)$

combinatorial explosion

Davison et al., 2012
... complicated likelihoods

Ising model:

\[
f(y; \theta) = \exp\left(\sum_{(j,k) \in E} \theta_{jk} y_j y_k \right) \frac{1}{Z(\theta)}
\]

\[j, k = 1, \ldots, K\]

observations: \[y_i = \pm 1; \text{ binary property of a node } i\]

in a graph with \(K\) nodes

parameter: \(\theta_{jk}\) measures strength of interaction between nodes \(i\) and \(j\)

\(E\) is the set of edges between nodes

partition function:

\[
Z(\theta) = \sum_y \exp\left(\sum_{(j,k) \in E} \theta_{jk} y_j y_k \right)
\]

Davison 2000 §6.2; Ravikumar et al. (2010); Xue et al. (2012)
... complicated likelihoods

M/G/1 queue: exponential arrival times, general service times, single server

Observations y_i: times between departures from the queue

Unobserved variables V_i: arrival time of customer i

Model:
- $V_1 \sim \text{Exp}(\theta_3)$
- $V_i \mid V_{i-1} \sim V_{i-1} + \text{Exp}(\theta_3)$
- $Y_i \mid X_{i-1}, V_i \sim \text{Uniform}\{\theta_1 + \max(0, V_i - X_{i-1}), \\
 \theta_2 + \max(0, V_i - X_{i-1})\}$

$X_i = \sum_{j=1}^{i} Y_j \quad G = U(\theta_1, \theta_2)$

Likelihood

$L(\theta; y) = \int \cdots \int f(v_1 \mid \theta) \prod_{i=1}^{n} f(v_i \mid v_{i-1}, \theta) \prod_{i=1}^{n} f(y_i \mid v_i, x_{i-1}, \theta) dv_1 \cdots dv_n$

Heggland & Frigessi, 2004
Fearnhead & Prangle, 2012
What’s a poor statistician to do?

- simplify the likelihood
 - composite likelihood
 - variational approximation
 - Laplace approximation to integrals

- change the mode of inference
 - quasi-likelihood
 - indirect inference

- simulate
 - approximate Bayesian computation
 - Markov chain Monte Carlo
Composite likelihood

- also called pseudo-likelihood
- reduce high-dimensional dependencies by ignoring them

- for example, replace \(f(y_{i1}, \ldots, y_{ik}; \theta) \) by

 pairwise marginal \(\prod_{j < j'} f_2(y_{ij}, y_{ij'}; \theta) \), or

 conditional \(\prod_j f_c(y_{ij} | y_{N(ij)}; \theta) \)

- Composite likelihood function

 \[
 CL(\theta; y) \propto \prod_{i=1}^n \prod_{j < j'} f_2(y_{ij}, y_{ij'}; \theta)
 \]

- Composite ML estimates are consistent, asymptotically normal, not fully efficient

Besag, 1975
Lindsay, 1988; Varin R Firth, 2011
Example: spatial extremes

\[\Pr(Z_1 \leq z_1, \ldots, Z_d \leq z_d) = \exp\{-V(z_1, \ldots, z_d; \theta)\} \]

- pairwise composite likelihood used to compare the fits of several competing models

- model choice using "CLIC", an analogue of AIC

\[-2 \log(\hat{CL}) + \text{tr}(J^{-1}K) \]

- Davison et al. 2012 applied this to annual maximum rainfall at several stations near Zurich

- “fitting max-stable processes to spatial or spatio-temporal block maxima is awkward ... the use of composite likelihoods ... has become widely used”

Davison & Huser
Example: Ising model

Ising model:

\[f(y; \theta) = \exp\left(\sum_{(j,k) \in E} \theta_{jk} y_j y_k \right) \frac{1}{Z(\theta)} \]

\(j, k = 1, \ldots, K \)

neighbourhood contributions

\[f(y_j \mid y_{(-j)}; \theta) = \frac{\exp(2y_j \sum_{k \neq j} \theta_{jk} y_k)}{\exp(2y_j \sum_{k \neq j} \theta_{jk} y_k) + 1} = \exp \ell_j(\theta; y) \]

penalized CL estimation based on sample \(y^{(1)}, \ldots, y^{(n)} \)

\[
\max_{\theta} \left\{ \sum_{i=1}^{n} \sum_{j=1}^{K} \ell_j(\theta; y^{(i)}) - \sum_{j<k} P_{\lambda}(|\theta_{jk}|) \right\}
\]

Xue et al., 2012
Ravikumar et al., 2010
Variational methods

in a Bayesian context, want $f(\beta \mid y)$
use an approximation $q(\beta)$
dependence of q on y suppressed

choose $q(\beta)$ to be
 - simple to calculate
 - close to posterior

simple to calculate
 - $q(\beta) = \prod q_j(\beta_j)$
 - simple parametric family

close to posterior: minimize Kullback-Leibler divergence between $q(\cdot)$ and $f(\cdot \mid y)$
... variational methods

- close to posterior: minimize Kullback-Leibler divergence

\[KL(q \parallel f_{post}) = \int q(\beta) \log\left\{ \frac{q(\beta)}{f(\beta \mid y)} \right\} d\beta \]

- equivalent to

\[\max_q \int q(\beta) \log\left\{ \frac{f(y, \beta)}{q(\beta)} \right\} d\beta \]

- because

\[\log f(y; \theta) \geq \int q(\beta) \log\left\{ \frac{f(y, \beta; \theta)}{q(\beta)} \right\} d\beta \]

- in a likelihood context

\[\log f(y; \theta) = \log \int f(y \mid \beta; \theta) f(\beta) d\beta \]

here β represent random effects u, or b, or ...
Example: GLMM

log-likelihood:

\[
\ell(\beta, \Sigma) = \sum_{i=1}^{m} \left(y_i^T X_i \beta - \frac{1}{2} \log |\Sigma| \right) \\
+ \log \int_{\mathbb{R}^k} \exp\{y_i^T Z_i u_i - 1_i^T b(X_i \beta + Z_i u_i) - \frac{1}{2} u_i^T \Sigma^{-1} u_i\} du_i
\]

variational approx:

\[
\ell(\beta, \Sigma) \geq \sum_{i=1}^{m} \left(y_i^T X_i \beta - \frac{1}{2} \log |\Sigma| \right) \\
+ \sum_{i=1}^{m} E_{u \sim N(\mu_i, \Lambda_i)} \left(y_i^T Z_i u - 1_i^T b(X_i \beta + Z_i u) - \frac{1}{2} u^T \Sigma^{-1} u - \log\{\phi_{\Lambda_i}(u - \mu_i)\} \right)
\]

simplifies to \(k\) one-dim. integrals
... variational approximations

- \[\ell(\beta, \Sigma) \geq \ell(\beta, \Sigma, \mu, \Lambda) \]

- variational estimate:

 \[\ell(\tilde{\beta}, \tilde{\Sigma}, \tilde{\mu}, \tilde{\Lambda}) = \arg\max_{\beta, \Sigma, \mu, \Lambda} \ell(\tilde{\beta}, \tilde{\Sigma}, \tilde{\mu}, \tilde{\Lambda}) \]

- inference for \(\tilde{\beta}, \tilde{\Sigma} \)? consistency? asymptotic normality?

 Hall, Ormerod, Wand, 2011; Hall et al. 2011

- emphasis on algorithms and model selection

 e.g. Tan & Nott, 2013, 2014

- **VL**: approx \(L(\theta; y) \) by a simpler function of \(\theta \), e.g. \(\prod q_j(\theta) \)

- **CL**: approx \(f(y; \theta) \) by a simpler function of \(y \), e.g. \(\prod f(y_j; \theta) \)
Some Links between Variational Approximation and Composite Likelihoods?

S. Robin

MSTGA, Paris, November 22-23, 2012

Zhang & Schneider 2012 JMLR V22; Grosse 2015 ICML
Indirect inference

- composite likelihood estimator solves
 \[(\partial/\partial \theta) \log CL(\theta; y) = 0\]
- solution converges to the true value
- because \(E\{(\partial/\partial \theta) \log CL(\theta; y)\} = 0\)

- what happens if an estimating equation \(g(y; \theta)\) is biased?
 \[g(y_1, \ldots, y_n; \tilde{\theta}_n) = 0; \quad \tilde{\theta}_n \to \theta^*\]
 \[Eg(Y; \theta^*) = 0\]

- \(\theta^* = \tilde{k}(\theta)\); invertible? \(\theta = k(\theta^*)\)
 \[\tilde{k}^{-1} = k\]

- new estimator \(\hat{\theta}_n = k(\tilde{\theta}_n)\)
- \(k(\cdot)\) is a bridge function, connecting wrong value of \(\theta\) to the right one
 Yi & R, 2010; Jiang & Turnbull, 2004
... indirect inference

- model of interest

\[y_t = G_t(y_{t-1}, x_t, \epsilon_t; \theta), \quad \theta \in \mathbb{R}^d \]

- likelihood is not computable, but we can simulate from the model

- simple (wrong) model

\[y_t \sim f(y_t \mid y_{t-1}, x_t; \theta^*), \quad \theta^* \in \mathbb{R}^p \]

- find the MLE in the simple model, \(\hat{\theta}^* = \hat{\theta}^*(y_1, \ldots, y_n) \), say

- simulate from model of interest for some value \(\theta \), compute a new MLE in simple model

- ‘good’ values of \(\theta \) give data that reproduces \(\hat{\theta}^* \)
... indirect inference

- **simulate** samples y_t^m, $m = 1, \ldots, M$ at some value θ

- compute $\hat{\theta}^*(\theta)$ from the simulated data

\[
\hat{\theta}^*(\theta) = \arg\max_{\theta^*} \sum_m \sum_t \log f(y_t^m | y_{t-1}^m, x_t; \theta^*)
\]

- choose θ so that $\hat{\theta}^*(\theta)$ is as close as possible to $\hat{\theta}^*$

- if both model parameters have the same dimension simply invert the ‘bridge function’

- usually not, so minimize some measure of distance between $\hat{\theta}(\beta)$ and $\hat{\theta}$

- estimates of θ are consistent, asymptotically normal, but not efficient
Approximate Bayesian Computation

- simulate θ from prior density $\pi(\cdot)$
- simulate data y' from $f(\cdot; \theta)$
- if $y' = y$ then θ is an observation from posterior $\pi(\cdot \mid y)$
- actually $s(y') = s(y)$ for some set of statistics
- actually $\rho\{s(y'), s(y)\} < \epsilon$ for some distance function $\rho(\cdot)$

- many variations, using different MCMC methods to select candidate values θ

Marin et al., 2010

Fearnhead & Prangle, 2011
approximate Bayesian computation

M/G/1 queue: exponential arrival times, general service times, single server

observations y_i: times between departures from the queue

unobserved variables V_i: arrival time of customer i

model:

- $V_1 \sim \text{Exp}(\theta_3)$
- $V_i \mid V_{i-1} \sim V_{i-1} + \text{Exp}(\theta_3)$
- $Y_i \mid X_{i-1}, V_i \sim \text{Uniform}\{\theta_1 + \max(0, V_i - X_{i-1}), \theta_2 + \max(0, V_i - X_{i-1})\}$
- $X_i = \sum_{j=1}^{i} Y_j$

 - service time $\sim \text{U}(\theta_1, \theta_2)$

ABC: use quantiles of departure times as summary statistics

Indirect Inference: use \bar{y}, $y_{(1)}$, $\hat{\theta}_2$ from steady-state model

Heggland & Frigessi, 2004
Table 7. Mean quadratic losses for various analyses of 50 $M/G/1$ data sets†

<table>
<thead>
<tr>
<th>Method</th>
<th>θ_1</th>
<th>θ_2</th>
<th>θ_3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comparison</td>
<td>1.1</td>
<td>2.2</td>
<td>0.0013</td>
</tr>
<tr>
<td>Comparison + regression</td>
<td>0.020</td>
<td>1.1</td>
<td>0.0013</td>
</tr>
<tr>
<td>Semi-automatic ABC</td>
<td>0.022</td>
<td>1.0</td>
<td>0.0013</td>
</tr>
<tr>
<td>Semi-automatic predictors</td>
<td>0.024</td>
<td>1.2</td>
<td>0.0017</td>
</tr>
<tr>
<td>Indirect inference</td>
<td>0.18</td>
<td>0.42</td>
<td>0.0033</td>
</tr>
</tbody>
</table>

†Losses within 10% of the smallest values for that parameter are italicized.

Fearnhead & Prangle, 2011
ABC and Indirect Inference

- both methods need a set of parameter values from which to simulate: θ' or θ
- both methods need a set of auxiliary functions of the data $s(y)$ or $\hat{\theta}^*(y)$
- in indirect inference, $\hat{\theta}^*$ is the ‘bridge’ to the parameters of real interest, θ
- C & K use orthogonal designs based on Hadamard matrices to chose θ'
- and calculate summary statistics focussed on individual components of θ
What’s a poor statistician to do?

- simplify the likelihood
 - composite likelihood
 - variational approximation
 - Laplace approximation to integrals

- change the mode of inference
 - quasi-likelihood
 - indirect inference

- simulate
 - approximate Bayesian computation
 - MCMC
so much to do, so little time!
Summary

- empirical likelihood, weighted likelihood, local likelihood, sieve likelihood, simulated likelihood, ...

- likelihood provides a common set of tools:
 - summary statistics
 - e.g. point estimates and estimates of precision
 - comparison of models

- likelihood puts modelling first
- likelihood puts inference first

- contrast with ‘black-box’ predictions
Thank You!