Accurate directional inference for vector parameters

Nancy Reid

October 28, 2016

with Don Fraser, Nicola Sartori, Anthony Davison
Parametric models and likelihood

- model $f(y; \theta)$,
- data $y = (y_1, \ldots, y_n)$ independent observations
- log-likelihood function $\ell(\theta; y) = \log f(y; \theta)$
- parameter of interest $\theta = (\psi, \lambda)$, $\psi \in \mathbb{R}^d$
- likelihood inference $w(\psi) = 2\{\ell(\hat{\psi}, \hat{\lambda}) - \ell(\psi, \hat{\lambda}_\psi)\} \sim \chi^2_d$

$w_B(\psi) = \frac{w(\psi)}{1 + B(\psi)} \sim \chi^2_d \quad O_p(n^{-2})$

$B(\psi) = \mathbb{E}\{w(\psi)\}/d$

$w^*(\psi) = w(\psi) \left\{ 1 - \frac{\log \gamma(\psi)}{w(\psi)} \right\}$

Skovgaard, 2001
Example: 2×3 contingency table

- activity amongst psychiatric patients

<table>
<thead>
<tr>
<th></th>
<th>Affective disorders</th>
<th>Schizophrenics</th>
<th>Neurotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retarded</td>
<td>12</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Not retarded</td>
<td>18</td>
<td>17</td>
<td>25</td>
</tr>
</tbody>
</table>

- model: log-linear $y \sim \text{Poisson}$, $\log \{ \mathbb{E}(y) \} = X\theta$, $\theta \in \mathbb{R}^6$

- log-likelihood $\ell(\theta; y) = \theta^T X^T y - 1^T e^{X\theta} = \theta^T s - c(\theta)$

- $\theta = (\psi, \lambda)$, $\psi \in \mathbb{R}^2$, $\lambda \in \mathbb{R}^4$

- (ψ_1, ψ_2) interaction parameters

- $H_0 : \psi = \psi_0 = (0, 0)$ independence

- log-likelihood $\ell(\psi, \lambda; y) = \psi^T s_1 + \lambda^T s_2 - c(\psi, \lambda)$
Testing $\psi = 0$

Likelihood Contours

$w(\psi_0) \sim \chi^2_2$ \hspace{1cm} p-value 0.047

$w^*(\psi_0)$ \hspace{1cm} p-value 0.048

directional \hspace{1cm} p-value 0.050

exact \hspace{1cm} p-value 0.051

Directional Inference IC 2016
Linear exponential families

- model \(f(y; \theta) = \exp[\varphi(\theta)^T s(y) - c\{\varphi(\theta)\} - d(y)] \) \(y_1, \ldots, y_n \text{ i.i.d} \)

- sufficient statistic \(s(y) \)

\[
f(s; \theta) = \exp[\varphi(\theta)^T s - nc\{\varphi(\theta)\} - \tilde{d}(s)] = \int_{\{y: s(y) = s\}} f(y; \theta)dy
\]

- reduce dimension from \(n \) to \(p \) by marginalization

- linear parameter of interest \(\varphi(\theta) = \theta = (\psi, \lambda) \)

- model \(f(s_1, s_2; \psi, \lambda) = \exp\{\psi^T s_1 + \lambda^T s_2 - nc(\psi, \lambda) - \tilde{d}(s)\} \)

- conditional density \(f(s_1 \mid s_2; \psi) = \exp\{\psi^T s_1 - n\tilde{c}_2(\psi) - \tilde{d}_2(s_1)\} \)

- reduce dimension from \(p \) to \(d \) by conditioning
... conditional density

- $f(s_1 | s_2; \psi) = \exp\{\psi^T s_1 - n\tilde{c}_2(\psi) - \tilde{d}_2(s_1)\}$
- $f(s_1 | s_2; \psi) = \frac{f(s_1, s_2; \psi, \lambda)}{f(s_2; \psi, \lambda)} \propto f(s; \psi, \lambda)$ with s_2 held fixed
- s_2 held fixed $\iff \hat{\lambda}_\psi$ held fixed
- saddlepoint approximation:
 $f(s_1 | s_2; \psi) \propto c \exp[\ell(\hat{\theta}_\psi^0; s) - \ell\{\hat{\theta}(s); s\}]|\{\hat{\theta}(s); s\}|^{-1/2}$, $s \in L_\psi^0$
- plane $L_\psi^0 = \{s \in \mathbb{R}^p : \hat{\lambda}_\psi = \hat{\lambda}_\psi^0\} = \{s \in \mathbb{R}^p : s_2 = s_2^0\}$
- $\hat{\theta}(s) : \partial \ell(\theta; s)/\partial \theta = 0$ m.l.e. as a function of the variable
- log-likelihood function $\ell(\theta; s) = \psi^T s_1 + \lambda^T s_2 - c(\theta)$, $s \in L_\psi^0$
... conditional density

\[f(s_1 \mid s_2; \psi) = c \exp[\ell(\hat{\theta}_0; s) - \ell(\hat{\theta}(s); s)] |j(\hat{\theta}(s); s)|^{-1/2}, \quad s \in L_0^\psi \]

<table>
<thead>
<tr>
<th></th>
<th>Affective disorders</th>
<th>Schizophrenics</th>
<th>Neurotics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retarded</td>
<td>12</td>
<td>13</td>
<td>5</td>
</tr>
<tr>
<td>Not retarded</td>
<td>18</td>
<td>17</td>
<td>25</td>
</tr>
</tbody>
</table>

\(s_1 \in \mathbb{R}^2, \ s_2 \in \mathbb{R}^4 \)

\(L_0^\psi \): all 2 \times 3 tables with the same row and column totals
Directional tests

- measure the **directed departure** from H_0 in L_{ψ}^0
- s_ψ: expected value of s_1, under H_0
- s^0: observed value of $s_1 = 0$ from centering
- L^*_ψ: line through these two points

$$L^*_\psi = ts^0 + (1 - t)(s_\psi - s^0), \quad t \in \mathbb{R}$$
... directional tests

\[L^*_\psi = ts^0 + (1 - t)s_\psi \]

Relative log likelihood

null hypothesis of independence \(t = 0 \)
observed value of \(s \) \(t = 1 \)

\(p \)-value compares probability from \(\times \) to \(\infty \) to that from \(\bigcirc \) to \(\infty \)
along the line in the sample space
curve in the parameter space

like a 2-sided \(p \)-value \(\Pr(\text{response} > \text{observed} | \text{response} > 0) \)
... directional p-value

- p-value
 \[p = \frac{\int_{1}^{\infty} t^{d-1} f\{s(t); \psi\} dt}{\int_{0}^{\infty} t^{d-1} f\{s(t); \psi\} dt} \]

- t^{d-1} from change to polar coordinates

- Simplifications:

 - 1: $L_\psi^* \subset L_\psi^0 \subset \mathbb{R}^p$

 - 2: ratio of two integrals – drop any terms that don’t depend on t

 - 3: saddlepoint approximation

\[
f(s; \psi) \doteq c \exp[\ell(\hat{\theta}_\psi^0; s) - \ell(\hat{\theta}(s); s)] |j(\hat{\theta}(s); s)|^{-1/2}, \quad s \in L_\psi^0
\]

\[
h(t) = f\{s(t); \psi\}
\]
2 × 3 table

\[h(t) \]

\[t^d h(t) \]

\[
\begin{array}{ccc}
 t = 0 & \rule{0pt}{2ex} & t = 0.5 \\
 10 & 10 & 10 \\
 20 & 20 & 20 \\

 t = 1 & \rule{0pt}{2ex} & t = 1 \\
 12 & 13 & 5 \\
 18 & 17 & 25 \\

 t = 2 & \rule{0pt}{2ex} & t = 2 \\
 14 & 16 & 0 \\
 16 & 14 & 30 \\
\end{array}
\]
... 2 × 3 table
2 × 3 table

<table>
<thead>
<tr>
<th>Method</th>
<th>Nominal</th>
<th>LRT</th>
<th>Directional</th>
<th>Skovgaard, 2001</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.010</td>
<td>0.011</td>
<td>0.010</td>
<td>0.010</td>
</tr>
<tr>
<td></td>
<td>0.025</td>
<td>0.028</td>
<td>0.024</td>
<td>0.025</td>
</tr>
<tr>
<td></td>
<td>0.050</td>
<td>0.055</td>
<td>0.050</td>
<td>0.050</td>
</tr>
<tr>
<td></td>
<td>0.100</td>
<td>0.107</td>
<td>0.100</td>
<td>0.101</td>
</tr>
<tr>
<td></td>
<td>0.250</td>
<td>0.260</td>
<td>0.250</td>
<td>0.251</td>
</tr>
<tr>
<td></td>
<td>0.500</td>
<td>0.510</td>
<td>0.501</td>
<td>0.501</td>
</tr>
<tr>
<td></td>
<td>0.750</td>
<td>0.757</td>
<td>0.752</td>
<td>0.752</td>
</tr>
<tr>
<td></td>
<td>0.900</td>
<td>0.905</td>
<td>0.902</td>
<td>0.900</td>
</tr>
<tr>
<td></td>
<td>0.950</td>
<td>0.952</td>
<td>0.950</td>
<td>0.950</td>
</tr>
<tr>
<td></td>
<td>0.975</td>
<td>0.974</td>
<td>0.973</td>
<td>0.973</td>
</tr>
<tr>
<td></td>
<td>0.990</td>
<td>0.992</td>
<td>0.992</td>
<td>0.991</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example: comparison of normal variances

![Box plot of diameter by batch]

- Likelihood ratio statistic: 0.0042
- Directional: 0.0389
- Skovgaard, 2001: 0.0622
- Bartlett’s test: 0.0136

F-test
Simulations

3 groups, 10 observations per group
Simulations

3 groups, 5 observations per group

Likelihood ratio statistic

Bartlett’s test

Directional

Skovgaard’s W*

Directional Inference IC 2016 16
Simulations

1000 groups, 5 observations per group

Likelihood ratio statistic

Bartlett’s test

directional

Skovgaard’s W*

dimension ψ 999; dimension nuisance 1001
Example: covariance selection

- model \(y_i \sim N_q(\mu, \Lambda^{-1}) \)

- linear exponential family

\[\ell(\theta; y) = \frac{n}{2} \log |\Lambda| - \frac{1}{2} \text{tr}(\Lambda y^T y) + 1^T y \xi - \frac{n}{2} \xi^T \Lambda \xi \]

- \(\theta = (\xi, \Lambda) = (\Lambda \mu, \Lambda) \)

- \(H_0: \) some off-diagonal elements of \(\Lambda \) are 0
 \(\psi_1 = \cdots = \psi_d = 0 \)

- need constrained m.l.e: use fitConGraph in ggm

- \(\hat{\Lambda}^{-1}(t) = t\hat{\Lambda}^{-1} + (1 - t)\hat{\Lambda}_0^{-1} \)

- \(f\{s(t); \psi\} \propto |t\hat{\Lambda}^{-1} + (1 - t)\hat{\Lambda}_0^{-1}|^{(n-q-2)/2} \)
... covariance selection simulations

<table>
<thead>
<tr>
<th></th>
<th>Nominal</th>
<th>0.010</th>
<th>0.025</th>
<th>0.050</th>
<th>0.100</th>
<th>0.250</th>
<th>0.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRT</td>
<td></td>
<td>0.055</td>
<td>0.105</td>
<td>0.170</td>
<td>0.270</td>
<td>0.487</td>
<td>0.730</td>
</tr>
<tr>
<td>Directional</td>
<td></td>
<td>0.011</td>
<td>0.026</td>
<td>0.050</td>
<td>0.101</td>
<td>0.248</td>
<td>0.498</td>
</tr>
<tr>
<td>Skovgaard, 2001</td>
<td></td>
<td>0.007</td>
<td>0.018</td>
<td>0.036</td>
<td>0.074</td>
<td>0.196</td>
<td>0.422</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Nominal</th>
<th>0.750</th>
<th>0.900</th>
<th>0.950</th>
<th>0.975</th>
<th>0.990</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRT</td>
<td></td>
<td>0.895</td>
<td>0.967</td>
<td>0.985</td>
<td>0.994</td>
<td>0.998</td>
</tr>
<tr>
<td>Directional</td>
<td></td>
<td>0.749</td>
<td>0.899</td>
<td>0.949</td>
<td>0.974</td>
<td>0.990</td>
</tr>
<tr>
<td>Skovgaard, 2001</td>
<td></td>
<td>0.678</td>
<td>0.852</td>
<td>0.919</td>
<td>0.955</td>
<td>0.980</td>
</tr>
</tbody>
</table>

Covariance matrix 11×11; dimension of $\psi = 45$

first order Markov dependence
Tangent exponential model \(n \downarrow p \) (dimension of \(y \) to dimension of \(\theta \))

- Every model \(f(y; \theta) \) on \(\mathbb{R}^n \) can be approximated by an exponential family model:

\[
f_{TEM}(s; \theta)ds = \exp\{\varphi(\theta)^T s + \ell(\theta)\} f_0(s)ds
\]

- \(s \) is a score variable on \(\mathbb{R}^p \)
- \(\ell(\theta) = \ell(\theta; y^0) \) is the observed log-likelihood function
- \(\varphi(\theta) = \varphi(\theta; y^0) \) is the canonical parameter \(\in \mathbb{R}^p \) to be described
- matches log-likelihood function at \(y^0 \), and its first derivative on the sample space, at \(y^0 \) by construction
- implements conditioning on an approximate ancillary statistic contrast with exp fam
Aside: canonical parameter $\varphi(\theta)$

- if $f(y; \theta)$ is an exponential family, φ is sitting in the model

- if not find a pivotal quantity $z_i = z_i(y_i; \theta)$ with a fixed distribution example: $(y_i - \mu)/\sigma$

- define $V_i = - \left(\frac{\partial z_i}{\partial y_i} \right)^{-1} \left. \frac{\partial z_i}{\partial \theta} \right|_{y=y^0, \theta=\hat{\theta}^0}$ a vector of length p

$$\varphi(\theta) = \varphi(\theta; y^0) = \sum_{i=1}^{n} \frac{\partial \ell(\theta; y^0)}{\partial y_i} V_i = \ell; V(\theta; y^0)$$
Testing a value for ψ eliminating nuisance parameter: $p \downarrow d$

- $\theta = (\psi, \lambda)$; $\varphi = \varphi(\theta)$ is the canonical parameter of the TEM

- with ψ fixed by the hypothesis, we can integrate out the nuisance parameter by Laplace approximation

- define the same plane in the score space L^0_ψ, where $\hat{\lambda}_\psi$ is fixed at its observed value

$$f(s; \psi) = c \exp\{\ell(\hat{\lambda}_\psi^0; s) - \ell(\hat{\lambda}(s); s)\} |j_{\varphi\varphi}(\hat{\lambda}(s); s)|^{-1/2} |j_{\lambda\lambda}(\hat{\lambda}_\psi^0; s)|^{1/2}$$

$s \in L^0_\psi$

$$p\text{-value} = \frac{\int_1^\infty t^{d-1} f\{s(t); \psi\} dt}{\int_0^\infty t^{d-1} f\{s(t); \psi\} dt}$$

$s(t)$ along the line L^*_ψ
Example: marginal independence

- \(y_i \sim N_q(\mu, \Sigma), \quad H_0 : \text{some entries of } \Sigma \text{ are } 0 \)

- estimate \(\Sigma \) under \(H_0 \) using fitCovGraph

- \(\ell(\Sigma) = \frac{n-1}{2} \left[\log |\varphi(\Sigma)| - \frac{n-1}{2} \text{tr} \{ \varphi(\Sigma)S \} \right], \quad \varphi(\Sigma) = \Sigma^{-1} \)
 \(S = \text{sample covariance} \)

- \(f\{ s(t); \psi \} \propto |t\hat{\Sigma} + (1 - t)\hat{\Sigma}_0|^{(n-q-2)/2} |j_{(\lambda\lambda)}\{\hat{\Sigma}_0; s(t)\}|^{1/2} \)

- \(j_{(\lambda\lambda)} \) needs \(\partial \ell(\Sigma)/\partial (\sigma_{jk}) \) for the non-zero elements

- \(j_{\lambda j\lambda k}\{\hat{\Sigma}_0; s(t)\} = \frac{n-1}{2} \left(\text{tr}(A_{kj} + t \left[\text{tr}\{(A_{kj} + A_{jk})(\hat{\Sigma}_0^{-1}\hat{\Sigma} - I_q)\} \right] \right) \)

- \(A_{kj} = \Sigma_0^{-1}(\partial \Sigma/\partial \lambda_k)\Sigma_0^{-1}(\partial \Sigma/\partial \lambda_j) \)
... independence simulations; \(n = 60; 600, d = 1000 \)

<table>
<thead>
<tr>
<th></th>
<th>Nominal</th>
<th>0.010</th>
<th>0.025</th>
<th>0.050</th>
<th>0.100</th>
<th>0.250</th>
<th>0.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRT</td>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Directional</td>
<td></td>
<td>0.007</td>
<td>0.024</td>
<td>0.049</td>
<td>0.097</td>
<td>0.250</td>
<td>0.497</td>
</tr>
<tr>
<td>Skovgaard, 2001</td>
<td></td>
<td>0.000</td>
<td>0.000</td>
<td>0.000</td>
<td>0.001</td>
<td>0.006</td>
<td>0.026</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Nominal</th>
<th>0.750</th>
<th>0.900</th>
<th>0.950</th>
<th>0.975</th>
<th>0.990</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRT</td>
<td></td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
<td>1.00</td>
</tr>
<tr>
<td>Directional</td>
<td></td>
<td>0.749</td>
<td>0.904</td>
<td>0.951</td>
<td>0.975</td>
<td>0.990</td>
</tr>
<tr>
<td>Skovgaard, 2001</td>
<td></td>
<td>0.099</td>
<td>0.225</td>
<td>0.333</td>
<td>0.440</td>
<td>0.570</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Nominal</th>
<th>0.010</th>
<th>0.025</th>
<th>0.050</th>
<th>0.100</th>
<th>0.250</th>
<th>0.500</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRT</td>
<td></td>
<td>0.065</td>
<td>0.122</td>
<td>0.199</td>
<td>0.311</td>
<td>0.538</td>
<td>0.786</td>
</tr>
<tr>
<td>Directional</td>
<td></td>
<td>0.010</td>
<td>0.024</td>
<td>0.049</td>
<td>0.098</td>
<td>0.251</td>
<td>0.496</td>
</tr>
<tr>
<td>Skovgaard, 2001</td>
<td></td>
<td>0.003</td>
<td>0.010</td>
<td>0.022</td>
<td>0.050</td>
<td>0.150</td>
<td>0.352</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Nominal</th>
<th>0.750</th>
<th>0.900</th>
<th>0.950</th>
<th>0.975</th>
<th>0.990</th>
</tr>
</thead>
<tbody>
<tr>
<td>LRT</td>
<td></td>
<td>0.927</td>
<td>0.979</td>
<td>0.991</td>
<td>0.997</td>
<td>0.999</td>
</tr>
<tr>
<td>Directional</td>
<td></td>
<td>0.751</td>
<td>0.898</td>
<td>0.950</td>
<td>0.975</td>
<td>0.989</td>
</tr>
<tr>
<td>Skovgaard, 2001</td>
<td></td>
<td>0.622</td>
<td>0.819</td>
<td>0.894</td>
<td>0.943</td>
<td>0.974</td>
</tr>
</tbody>
</table>
Conclusion

- different way to assess vector parameters
- incorporates information in the direction of departure
- easy to compute: two model fits, plus 1-d numerical integration
- accurate conditionally, by construction, and unconditionally
- can be used in models of practical interest
- exponential family model not necessary – easily generalized using approximate exponential family model
... conclusion
... conclusion
... conclusion
References

Davison, A.C., Fraser, D.A.S., Reid, N., Sartori, N. (2014). Accurate directional inference for vector parameters in linear exponential families. *JASA*

