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What are we looking for?

Nature of Probability

Modern Approaches

What’s the end goal?
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Posterior Distribution Bayes 1763

Stigler 2013
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Posterior Distribution Bayes 1763

π(θ | y0) = f (y0; θ)π(θ)/m(y0)

probability distribution for θ
y0 is fixed

probability comes from π(θ)
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http://farm4.static.flickr.com/3338/3571283086_3d28763011.jpg


Fiducial Probability Fisher 1930

“A small messy man with red hair, a beard and glasses boasting near
inch-thick lenses... ... Fisher is remembered as the most significant British
statistician of the 20th century” Hampstead Highgate Express, 2013
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http://openplaques.org/plaques/507
http://www.hamhigh.co.uk/news/heritage/heritage-the-hampstead-years-of-sir-ronald-aylmer-fisher-most-significant-british-statistician-of-the-20th-century-1-2235800


Fiducial Probability Fisher 1930

df = − ∂

∂θ
F (T , θ)dθ fiducial probability density for θ, given statistic T

probability comes from (dist’n of) T
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http://openplaques.org/plaques/507


Confidence Distribution Cox 1958; Efron 1993

• ”Much controversy has centred on the distinction between fiducial and
confidence estimation”

• “ ... The fiducial approach leads to a distribution for the unknown parameter”

• “... the method of confidence intervals, as usually formulated, gives only one
interval at some preselected level of probability”

• “... in ... simple cases ... there seems no reason why we should not work
with confidence distributions for the unknown parameter

• “These can either be defined directly, or ... introduced in terms of the set of
all confidence intervals”
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Confidence Distribution Cox 1958; Efron 1993

• “assigns probability 0.05 to θ lying between the upper endpoints of the 0.90
and 0.95 confidence intervals, etc.

• “Of course this is logically incorrect, but it has powerful intuitive appeal”

• “... no nuisance parameters [this] is exactly Fisher’s fiducial distribution”
Seidenfeld 1992; Zabell 1992
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https://commons.wikimedia.org/w/index.php?curid=6052585


Structural Probability Fraser 1966

• “a re-formulation of fiducial probability for transformation models”
• “This transformation re-formulation leads to a frequency interpretation”
• a change in the parameter value can be offset by a change in the sample

y → y + a; θ → θ − a
• a local location version leads to:

df = − ∂

∂θ
F (y , θ)dθ = − ∂

∂θ
F (y , θ)

f (y0, θ)

f (y0, θ)
=

Likelihood︷ ︸︸ ︷
f (y0, θ)

dy
dθ

∣∣∣∣
y0
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https://robertmoffatt115.wordpress.com/2011/02/07/ron-thom%E2%80%99s-fraser-residence/


Significance Function Fraser 1991

0 2 4 6 8

−8
−6

−4
−2

0

ψ

Lo
g 

lik
el

ih
oo

d

0 2 4 6 8

−3
−2

−1
0

1
2

3

ψ

Pi
vo

t

• “from likelihood to significance”
• “significance records probability left of the observed data point”

”likelihood records probability at the observed data point”
• the significance function is a plot of this probability

as a function of θ
• “the full spectrum of confidence intervals is obtained ...

suggesting the alternate name confidence distribution function
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Why do we want distributions on parameters?

• inference is intuitive
• combines easily with decision theory
• de-emphasizes point estimation and arbitrary cut-offs

• Example:
n = 10, ȳ = 1.58, s = 1.23, s/

√
n = 0.39, t(µ) =

√
n(ȳ − µ)/s

• If µ is the true value, then pr{tα/2 ≤ t(µ) ≤ t1−α/2} = 1− α
• pivot on t to obtain

(1− α)CI : {ȳ − t1−α/2
s√
n
≤ µ ≤ ȳ + tα/2

s√
n
} = (0.70,2.46)

• “it’s tempting to conclude that µ is more likely to be near the
middle of this interval, and if outside, not very far outside”

Cox 2006
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Why not go Bayes?
Example: League Tables for Hospital Comparisons

Normand, Ash, Fienberg, Stukel, Utts, Louis ARSIA V3
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http://www.annualreviews.org/toc/statistics/3/1


League Tables Normand et al. 2016

• CMS uses a hierarchical model to model death risks to
accommodate patient-level variation in outcome, patient-level
risk, and hospital-level variation
• Model: Yij a binary outcome (death) for patient j , with risk

factors xij , at hospital i , with ni cases

Yij | β0i , α, xij ∼ Bern{pij},
logit(pij) = β0i + αTxij ,

β0i | µ, τ2 ∼ N(µ, τ2)

• SMRi =

∑ni
j=1 EDi(β0i , xij , α, µ, τ

2)∑ni
j=1 EDi(xij , µ, α, τ2)

• The numerator integrates over the posterior distribution of β0i , and the
denominator integrates over the prior distribution of β0i

• Adjusting each hospital’s outcomes for its size and case mix
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Nature of Probability Cox 2006; R & Cox 2015; Zabell, 1992

• probability to describe physical haphazard variability
• probabilities represent features of the “real” world

in somewhat idealized form
• subject to empirical test and improvement
• conclusions of statistical analysis expressed in terms of

interpretable parameters
• enhanced understanding of the data generating process

• probability to describe the uncertainty of knowledge
• measures rational, supposedly impersonal, degree of belief,

given relevant information Jeffreys, 1939,1961
• measures a particular person’s degree of belief, subject

typically to some constraints of self-consistency
F.P. Ramsey, 1926; de Finetti, 1937; Savage, 1956

• often linked with personal decision making necessarily?
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... nature of probability

• Bayes posterior describes uncertainty of knowledge
• probability comes from the prior
• or from the model, cf. hospital league tables

• confidence intervals or p-values refer to empirical probabilities

• in what sense are confidence distribution functions,
significance functions, structural or fiducial probabilities to be
interpreted?

• empirically? degree of belief?
• literature is not very clear imho

• we may avoid the need for a different version of probability by
appeal to a notion of calibration
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What goes around ...
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https://www.hsph.harvard.edu/biostatistics/2017/04/the-fourth-bayesian-fiducial-and-frequentist-workshop-bff4/


What goes around ...

BFF1,2: “facilitate the exchange of recent research
developments in Bayesian, fiducial and frequentist
methodology, concerning statistical foundations”

BFF3: “re-examine the foundations of statistical inferences;
develop links to bridge gaps among different statistical
paradigms”

BFF4: “celebrates foundational thinking in statistics and
inference under uncertainty”
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What’s old is new

• posterior distribution

• fiducial probability

• confidence distribution

• structural probability

• objective Bayes

• generalized fiducial inference

• confidence distributions and
confidence curves

• approximate significance
functions
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Objective Bayes Berger, BFF4, e.g.

• noninformative, default, matching, reference, ... priors

• we may avoid the need for a different version of probability by
appeal to a notion of calibration

Cox 2006, R & Cox 2015

• as with other measuring devices
within this scheme of repetition, probability is defined as a
hypothetical frequency

• it is unacceptable if a procedure yielding high-probability
regions in some non-frequency sense are poorly calibrated

• such procedures, used repeatedly, give misleading
conclusions

Bayesian Analysis, V1(3) 2006

Distributions for Parameters CMU, April 2017 19/35



... objective Bayes

• pragmatic solution as a starting point

• some versions may not be correctly calibrated

• requires checking in each example

• calibrated versions must be targetted on the parameter of
interest

• only in very special cases can calibration be achieved for more
than one parameter in the model, from the same prior

• the simplicity of a fully Bayesian approach to inference is lost
Gelman 2008; PPM LW
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Example Stein, 1959

• yi ∼ N(µi ,1/n), i = 1, . . . , k ; π(µi) ∝ 1

• posterior distribution of aTµ is well-calibrated

• marginal posterior distribution of ||µ|| is not

• discrepancy is a function of
k − 1
||µ||
√

n
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Confidence Distribution Xie & Singh; Hjort & Schweder

• any function H : Y ×Θ→ (0,1) which is

• a cumulative distribution function of θ for any y ∈ Y

• has correct coverage: H(Y , θ) ∼ U(0,1) Y ∼ f (·; θ)

• CDs, or approximate CDs, are readily obtained from pivotal
quantitites

• pivotal quantity: g(y , θ) with sampling distribution known
√

n(ȳ − µ)/s
• sufficiently general to encompass bootstrap distribution and

many standard likelihood quantities
• recent examples include robust meta-analysis and

identification of change-points
Xie et al. 2011; Cunen et al. 2017; Hannig & Xie 2012
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... confidence distribution
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Generalized Fiducial Hannig et al 2016

• Fisher: g(Y , θ) has a known distribution; invert this to create
distribution for θ when y0 is obtained
• Fraser: use data-generating equation to make the inversion

more direct, e.g. Yi = µ+ σei , ei = (y0
i − µ)/σ

• Hannig et al. Y = G(U, θ), U has known distribution
• suppose we can invert this for any y0: θ = Qy0(U)

• fiducial distribution of θ is Qy0(U∗) U∗ independent copy of U

• inverse only exists if θ and Y have same dimension
• might get this by reduction of a sample to sufficient statistics
• more generally, some conditional argument seems to be

required
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Significance Function Fraser & R, ...

• current solutions based on asymptotic arguments

• that relies on a location model approximation

• which gives appropriate conditioning

• and an exponential model approximation

• which can be computed accurately using saddlepoint
approximation

• combination of structural model and likelihood asymptotics

• leads for example to construction of default priors
Fraser et al 2010
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What’s the end goal?

• Applications – something that works
• gives ‘sensible’ answers
• not too sensitive to model assumptions
• computable in reasonable time
• provides interpretable parameters

• Foundations – peeling back the layers
• what does ’works’ mean?
• what probability do we mean
• ‘Goldilocks’ conditioning Meng & Liu, 2016
• how does this impact applied work?
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Role of Foundations

• avoid apparent discoveries based on spurious patterns

• to shed light on the structure of the problem

• calibrated inferences about interpretable parameters

• realistic assessment of precision

• understanding when/why methods work/fail
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Some warning signs
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Some warning signs
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Some warning signs

Distributions for Parameters CMU, April 2017 30/35

https://arxiv.org/pdf/1611.03530.pdf


Some warning signs

“deep
neural networks easily fit random labels”

“these observations rule out all of VC-dimension, Rademacher
complexity, and uniform stability as possible explanations for the
generalization performance of state-of-the-art neural networks.”
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Some warning signs
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https://www.theguardian.com/technology/2017/apr/13/ai-programs-exhibit-racist-and-sexist-biases-research-reveals?CMP=share_btn_tw
https://www.theguardian.com/technology/2017/mar/27/us-facial-recognition-database-fbi-drivers-licenses-passports


Summary

• Bayes, fiducial, structural, confidence

• BFF 1 - 4: Develop links to bridge gaps among different
statistical paradigms

• targetting parameters
• limit distributions
• calibration in repeated sampling
• relevant repetitions for the data at hand

NR: Why is conditional inference so hard?
DRC: I expect we’re all missing something, but I don’t know
what it is

StatSci Interview 1996
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THANK YOU!
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