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Background
I parametric model f (y ; θ), y ∈ Rm; θ ∈ Rd

I likelihood function L(θ; y) ∝ f (y ; θ)

I why likelihood?

I maximum likelihood estimator is consistent
and asymptotically efficient

I θ̂
.∼ N{θ, j−1(θ̂)} j(θ) = −`′′(θ); `(θ) = log L(θ)

I likelihood ratio, or log-likelihood difference, captures
asymmetry in the model

I w(θ) = 2{`(θ̂)− `(θ)} .∼ χ2
d

I combine with prior for Bayesian inference

I EM algorithm for computing maximum likelihood estimate
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... background
I warning: likelihood methods need regularity conditions

on the model
I can have poor finite sample behaviour for large

numbers of parameters
I priors also very tricky with large numbers of parameters
I finite sample corrections may be advisable

I difficulty with construction of the likelihood function
I inversion of large covariance matrices
I intractable integrals; awkward normalization constants
I combinatorial explosion
I nuisance components difficult to specify

I lower dimensional marginal or conditional distributions
may be tractable

I combine these to form composite likelihood
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Terminology
I Model f (y ; θ), y ∈ Rm, θ ∈ Rp

I Events A1, . . . ,AK ; “sub-densities” f (y ∈ Ak ; θ)

I Composite log-likelihood

c`(θ; y) =
K∑

k=1

wk log f (y ∈ Ak ; θ) =
K∑

k=1

wk `(θ; y ∈ Ak )

I wk weights to be determined

I composite likelihood is a type of:
I pseudo-likelihood (spatial modelling);
I quasi-likelihood (econometrics);
I limited information method (psychometrics)
I ...
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Example: spatial generalized linear models
I generalized linear geostatistical models

E{Y (s) | u(s)} = g{x(s)Tβ + u(s)}, s ∈ S ⊂ Rd ,d ≥ 2

Diggle & Ribeiro, 2007
I random intercept u(·) is a realization of a stationary GRF,

mean 0, covariance

cov{u(s),u(s′)} = σ2ρ(s − s′;α)

I m observed locations y = (y1, . . . , ym) with yi = y(si)
I likelihood function

L(θ; y) =

∫
Rn

m∏
i=1

f (yi | ui ; θ) f (u; θ)︸ ︷︷ ︸
MVN(0,Σ)

du1 . . . dum

I no factorization into lower dimensional integrals, as with
independent observations from the “‘usual” GLMMs
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... spatial generalized linear models

I L(θ; y) =

∫
Rn

n∏
i=1

f (yi | ui ; θ)f (u; θ)du1 . . . dun

I simulation methods, MCMC, MCEM, etc., costly O(m3)

I pairwise likelihood

Lpair (θ; y) =
∏

{(i,j)∈Sδ}

∫
R2

f (yi | ui ; θ)f (yj | uj ; θ)f2(ui ,uj ; θ)duiduj

Heagerty & Lele (1998), Varin (2008)
I comments:

I product of bivariate integrals
I accurate quadrature approximations available
I use only close pairs: Sδ = {(i , j) : ||si − sj || < δ}
I computational cost O(n)
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Composite conditional likelihoods
I Besag (1974) pseudo-likelihood

LC(θ; y) =
m∏

r=1

f (yr | {ys : ys neighbour of yr ; θ)

I pairwise conditional

LC(θ; y) =
m∏

r=1

m∏
s=1

f (yr | ys; θ)

Molenbergs & Verbeke (2005); Mardia et al. (2009)
I full conditional

LC(θ; y) =
m∏

r=1

f (yr | y(−r); θ)

I time series

LC(θ; y) =
m∏

r=1

f (yr | yr−1; θ)
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Composite marginal likelihoods
I independence likelihood

Lind (θ; y) =
m∏

r=1

f (yr ; θ)

Chandler & Bate (2007)
I pairwise likelihood

Lpair (θ; y) =
m∏

r=1

m∏
s=r+1

f (yr , ys; θ)

Cox & Reid (2004); Varin (2008)
I pairwise differences

Ldiff (θ; y) =
m−1∏
r=1

m∏
s=r+1

f (yr − ys; θ)

Curriero & Lele (1999)
I optimal combination of Lind and Lpair
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Derived quantities
I composite log-likelihood

c`(θ; y) = log LC(θ; y) =
∑K

k=1 wk`k (θ; y)

I composite score
u(θ; y) = ∇θc`(θ; y) =

∑K
k=1 wk∇θ`k (θ; y) E{u(θ; Y )} = 0

I sensitivity matrix H(θ) = Eθ{−∇θu(θ; Y )}
I variability matrix J(θ) = varθ{u(θ; Y )}

I Godambe information
G(θ) = H(θ)J−1(θ)H(θ) H(θ) 6= J(θ)
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Inference
I Sample y1, . . . , yn independent from f (y ; θ) or fi(y ; θ)

I Composite log-likelihood c`(θ; y) =
n∑

i=1

c`(θ; yi)

I maximum composite likelihood estimator
θ̂CL = arg max c`(θ; y) u(θ̂CL; y) = 0

I Asymptotic consistency, normality

√
n(θ̂CL − θ)

L−→ Np{0,G−1(θ)}, n→∞, m fixed

I if n fixed and m→∞, need assumptions on replication
I examples include time series and spatial data

decaying correlations
I G(θ) = H(θ)J−1(θ)H(θ)
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... inference
I θ = (ψ, λ), ψ ∈ Rq, λ ∈ Rp−q

I inference based on maximum likelihood estimator

θ̂CL
.∼ Np{θ,G−1(θ̂CL)} =⇒ ψ̂CL

.∼ Nq{ψ,Gψψ(θ̂CL)}

I CL log-likelihood ratio statistic
wCL(ψ) = 2{c`(θ̂CL)− c`(θ̃CL)} L−→

∑q
j=1 λjZ 2

j

I θ̃CL = {ψ, λ̂CL(ψ)}, constrained mle
I Zj ∼ N(0,1) λj eigenvalues of (Hψψ)−1Gψψ Kent (1982)

I G(θ) = H(θ)J−1(θ)H(θ)
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... inference
I θ̂CL not fully efficient unless G(θ) = H(θ)J−1(θ)H(θ) = i(θ)
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... inference
I efficiency of θ̂CL can be pretty high, in many applications
I careful choice of weights can improve efficiency of θ̂CL

in special cases
I weights can be used to incorporate sampling information,

including missing data Yi, 12, Molenberghs, 12, Briollais & Choi,12

I wCL(ψ) can be re-scaled to .∼ χ2
q

Chandler & Bate (2007), Salvan et al. 11, 12 (wip)
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y ∼ N(µ1, σ2R), Rrs = ρ



Model selection
I Akaike Information Criterion

AICCL = −2c`n(θ̂CL) + 2 tr{J(θ̂)H−1(θ̂)}

Varin & Vidoni (2005)

I Bayesian Information Criterion

BICCL = −2c`n(θ̂CL) + log(n) tr{J(θ̂)H−1(θ̂)}

Gao & Song (2010)

I effective number of parameters

tr{H(θ)G−1(θ)} = tr{J(θ)H−1(θ)}

G(θ) = H(θ)J−1(θ)H(θ)
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Some surprises
I Y ∼ N(µ,Σ) µ̂CL = µ̂, Σ̂CL = Σ̂

I Y ∼ N(µ1, σ2R), R =


1 ρ . . . ρ
ρ 1 . . . ρ
...

. . . . . .
...

ρ . . . ρ 1


I θ̂CL = θ̂, G(θ) = i(θ), G(θ) = H(θ)J−1(θ)H(θ)

I H(θ) 6= J(θ) H(θ) = var(Score), J = E(∇θScore)

I Y ∼ (0,R): ρ̂CL 6= ρ̂; a.var(ρ̂CL) > a.var(ρ̂)

I efficiency improvement, nuisance parameter is unknown
Mardia et al (2008); Xu, 12

I CL can be fully efficient, even if H(θ) 6= J(θ)
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... some surprises
I Godambe information G(θ) can decrease as more

component CLs are added
I pairwise CL can be less efficient than independence CL
I this can’t always be fixed by weighting Xu, 12

I parameter constraints can be important
I Example: binary vector Y ,

P(Yj = yj ,Yk = yk ) ∝
exp(βyj + βyk + θjk yjyk )

{1 + exp(βyj + βyk + θjk yjyk )}
I this model is inconsistent

I parameters may not be identifiable in the CL, even if they
are in the full likelihood Yi, 12
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Applications: spatial and space-time data
I conditional approaches seem more natural
I condition on neighbours in space
I condition on small number of lags (in time)
I some form of blockwise components often proposed

Stein et al, 04; Caragea and Smith, 07

I fMRI time series Kang et al, 12

I air pollution and health effects Bai et al, 12

I computer experiments: Gaussian process models Xi, 12
I spatially correlated extremes

I joint tail probability known
I joint density requires combinatorial effort (partial

derivatives)
I composite likelihood based on joint distribution of pairs,

triples seems to work well
Davison et al, (2012); Genton et al., 12, Ribatet, 12
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Spatial extremes
I vector observations (X1i , . . . ,Xdi), i = 1, . . . ,n
I example, wind speed at each of d locations
I component-wise maxima Z1, . . . ,Zm; Zj = max(Xj1, . . . ,Xjn)

I Zj are transformed (centered and scaled)
I general theory says

Pr(Z1 ≤ z1, . . . ,Zm ≤ zm) = exp{−V (z1, . . . , zm)}

I function V (·) can be parameterized via Gaussian process
models

I example

V (z1, z2) = z−1
1 Φ{(1/2)a(h) + a−1(h) log(z2/z1)}+

z−1
2 Φ{(1/2)a(h) + a−1(h) log(z1/z2)}

Z (h) = (z1, z2),Z (0) = (0, 0), a(h) = hT Ω−1h
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... spatial extremes
I

Pr(Z1 ≤ z1, . . . ,Zd ≤ zm) = exp{−V (z1, . . . , zm)}

I to compute log-likelihood function, need the density
I combinatorial explosion in computing joint derivatives

of V (·)
I Davison et al. (2012, Statistical Science) used pairwise

composite likelihood
I compared the fits of several competing models,

using AIC analogue described above
I applied to annual maximum rainfall

at several stations near Zurich

Composite Likelihood Brown, January 2013 21



Davison et al, 2012
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... Davison et al, 2012
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Network tomography, Liang & Yu, 2003
I X = (X1, . . . ,Xm′) network dynamics

e.g. traffic flow counts; node delays
I Y = (Y1, . . . ,Ym) measurement vector m� m′

I Y = AX , A known routing matrix, entries 1 m ×m′

I components Xj are independent, with density fj(·; θj)
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... applications
I time series – a case of large m, fixed n

I need new arguments re consistency, asymptotic normality
I consecutive pairs: consistent, not asy. normal
I AR(1): consecutive pairs fully efficient; all pairs terrible

(consistent, highly variable)
I MA(1): consecutive pairs terrible

Davis and Yau (2011)
I genetics: estimation of recombination rate

I somewhat similar to time series
I but correlation may not decrease with increasing length
I suggesting all possible pairs may be inconsistent
I joint blocks of short sequences seems preferable

I linkage disequilibrium
I family based sampling

Larribe and Fearnhead (2011); Choi and Briollais, 12
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... applications
I Gaussian graphical models Gao and Massam, 12

I symmetry constraints have a natural formulation in terms of
elements of concentration matrix

I conditional distribution of yj | y(−j)

I multivariate binary data for multi-neuron spike trains
Amari (IMS,12)

I CL as a working likelihood in ‘maximization by parts’
Bellio, 12

I latent variable models in psychometrics
Moustaki, 12, Maydeu-Olivares, 12

I many linear and generalized linear models with random
effects

I multivariate survival data
I ...
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What don’t we know?
I Design
I marginal vs. conditional
I choice of weights
I down-weighting ‘distant’ observations
I choosing blocks and block sizes
I Uncertainty estimation
I Ĵ(θ̂CL) = v̂ar{∂c`(θ)/∂θ}

need replication; need lots of replication

I perhaps estimate G(θ̂CL) or var(θ̂CL) directly –
bootstrap, jackknife
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... what don’t we know?
I Identifiability (1): does there exist a model compatible with

a set of marginal or conditional densities?

I Identifiability (2): what if different components are
estimating different parameters?

I Robustness: CL uses ‘low-dimensional’ information: is this
a type of robustness?

I find a class of models with same low-d marginals Xu, 12
I classical perturbation of starting model

(using copulas?) Joe, 12
I random effects models might be amenable to

theoretical analysis Jordan, 12

I asymptotic theory for large m (long vectors of responses),
small n

I relationship to Generalized Estimating Equations
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Aspects of robustness
I model robustness

I univariate and bivariate margins only for example
I means, variances, association parameters
I similar in flavour to generalized estimating equations GEE:

mean structure primary
I computational robustness

I composite log-likelihood functions are smoother than
log-likelihood functions

I easier to maximize, easier to work with
I especially in high dimension cases Liang and Yu (2003)

I robust to missing data mechanisms: Yi, Zeng and Cook (2010)
I access to multivariate distributions: e.g. mv extremes

Davison et al. (2012)
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Robustness of consistency
working model {f (y ; θ); θ ∈ Θ}
true model g(y)

Model Full Likelihood Composite Likelihood
Correctly specified f (y ; θ0) = g(y) fk (y ; θ0) = gk (y) for all k

θ̂ML → θ0 θ̂CL → θ0
Misspecified f (y ; θ) 6= g(y), fk (y ; θ) 6= gk (y) for some k

θ̂ML → θ∗ML θ̂CL → θ∗

Top row – efficiency Ximing Xu, U Toronto
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... robustness of consistency
I example (Andrei and Kendziorski, 2009):

Y1 ∼ N(µ1, σ
2
1), Y2 ∼ N(µ2, σ

2
2), ε ∼ N(0,1)

I Y3 = Y1 + Y2 + bY1Y2 + ε

I full likelihood for multivariate normal is a mis-specified
model, b̂ = 0

I composite conditional likelihood based on normal
distribution for f (Y3 | Y2,Y1) −→ consistent estimate of b

I example (Arnold and Xu):
f (Y ) = Φp(Y ;µ,Σ) + g(µ,Σ)(

∏p
i=1 Yi1{|Yi | ≤ t})

I sub-distributions of dimension k < p are multivariate
normal

I pairwise likelihood estimator nearly identical to mle
assuming incorrect Np(µ; Σ) model
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Some dichotomies
I conditional vs marginal

I pairwise vs everything else

I unstructured vs time series/spatial

I weighted vs unweighted

I “it works” vs “why does it work?” vs “when will it not work”
I ...
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